Abstract
In this paper, we present a deep learning based system for the user profiling and stance detection tasks in Twitter. Stance detection consists in automatically determining from text whether the author is in favor of a given target, against this target, or whether neither inference is likely. The proposed system assembles Convolutional Neural Networks and Long Short-Term Memory neural networks. We use this system to address, with minor changes, both problems. We explore embeddings and one-hot vectors at character level to select the best tweet representation.
We test our approach in the Stance and Gender Detection in Tweets on Catalan Independence track proposed at IberEval 2017 workshop. With the proposed approach, we achieve state-of-the-art results for the Stance detection subtask and the best results published until now for the Gender detection subtask.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cruz, F.L., Troyano, J.A., Pontes, B., Ortega, F.J.: Building layered, multilingual sentiment lexicons at synset and lemma levels. Expert Syst. App. 41(13), 5984–5994 (2014). http://www.sciencedirect.com/science/article/pii/S0957417414001997
Ding, X., Liu, B., Yu, P.S.: A holistic lexicon-based approach to opinion mining. In: Proceedings of the 2008 International Conference on Web Search and Data Mining, pp. 231–240. WSDM 2008, ACM, New York, NY, USA (2008). http://doi.acm.org/10.1145/1341531.1341561
Doetsch, P., Golik, P., Ney, H.: A comprehensive study of batch construction strategies for recurrent neural networks in MXNet. CoRR abs/1705.02414 (2017). http://arxiv.org/abs/1705.02414
Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4), 193–202 (1980). https://doi.org/10.1007/BF00344251
García Cumbreras, M.A., et al.: Overview of TASS 2016. In: Proceedings of TASS 2016, pp. 13–21. CEUR Workshop Proceedings. CEUR-WS.org (2016)
González, J.A., Pla, F., Hurtado, L.F.: ELiRF-UPV at IberEval 2017: stance and gender detection in Tweets. In: Proceedings of the Second Workshop on Evaluation of Human Language Technologies for Iberian Languages (IberEval 2017), pp. 193–198. IberEval 2017, CEUR Workshop Proceedings. CEUR-WS.org (2017)
Grandvalet, Y., Canu, S., Boucheron, S.: Noise injection: theoretical prospects. Neural Comput. 9(5), 1093–1108 (1997). http://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.5.1093
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. CoRR abs/1502.03167 (2015). http://arxiv.org/abs/1502.03167
Lai, M., Cignarella, A.T., Hernández Farías, D.I.: iTACOS at IberEval2017: detecting stance in Catalan and Spanish Tweets. In: Proceedings of the Second Workshop on Evaluation of Human Language Technologies for Iberian Languages (IberEval 2017), pp. 185–192. IberEval 2017, CEUR Workshop Proceedings. CEUR-WS.org (2017)
Martínez Cámara, E., Díaz Galiano, M.C., García Cumbreras, M.A., Vega, M.G.: Overview of TASS 2017. In: Proceedings of TASS 2017, pp. 13–21. CEUR Workshop Proceedings. CEUR-WS.org (2017)
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. CoRR abs/1301.3781 (2013). http://arxiv.org/abs/1301.3781
Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. CoRR abs/1310.4546 (2013). http://arxiv.org/abs/1310.4546
Mohammad, S.M., Kiritchenko, S., Sobhani, P., Zhu, X., Cherry, C.: Semeval-2016 task 6: detecting stance in tweets. In: Proceedings of the International Workshop on Semantic Evaluation. SemEval 2016, San Diego, California, June 2016
Mohammad, S.M., Turney, P.D.: Emotions evoked by common words and phrases: using mechanical Turk to create an emotion lexicon. In: Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, pp. 26–34. CAAGET 2010, Association for Computational Linguistics, Stroudsburg, PA, USA (2010). http://dl.acm.org/citation.cfm?id=1860631.1860635
Mohammad, S.M., Turney, P.D.: Crowdsourcing a word-emotion association lexicon. Comput. Intell. 29(3), 436–465 (2013)
Molina-González, M.D., Martínez-Cámara, E., Martín-Valdivia, M.T., Perea-Ortega, J.M.: Semantic orientation for polarity classification in Spanish reviews. Expert Syst. App. 40(18), 7250–7257 (2013). http://www.sciencedirect.com/science/article/pii/S0957417413004752
Nakov, P., Ritter, A., Rosenthal, S., Stoyanov, V., Sebastiani, F.: SemEval-2016 task 4: sentiment analysis in Twitter. In: Proceedings of the 10th International Workshop on Semantic Evaluation. SemEval 2016, Association for Computational Linguistics, San Diego, California, June 2016
Rosenthal, S., Farra, N., Nakov, P.: SemEval-2017 task 4: sentiment analysis in Twitter. In: Proceedings of the 11th International Workshop on Semantic Evaluation. SemEval 2017, Association for Computational Linguistics, Vancouver, Canada, August 2017
Rosso, P., Rangel, F., Potthast, M., Stamatatos, E., Tschuggnall, M., Stein, B.: Overview of PAN’16. In: Fuhr, N., et al. (eds.) CLEF 2016. LNCS, vol. 9822, pp. 332–350. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44564-9_28
Saralegi, X., San Vicente, I.: Elhuyar at TASS 2013. In: XXIX Congreso de la Sociedad Espaola de Procesamiento de lenguaje Natural, Workshop on Sentiment Analysis at SEPLN (TASS2013), pp. 143–150 (2013)
Schuster, M., Paliwal, K.: Bidirectional recurrent neural networks. Trans. Sig. Proc. 45(11), 2673–2681 (1997). https://doi.org/10.1109/78.650093
Taulé, M., Martí, M., Rangel, F., Rosso, P., Bosco, C., Patti, V.: Overview of the task of Stance and Gender Detection in Tweets on Catalan Independence at IBEREVAL 2017. In: Martínez, R., Gonzalo, J., Rosso, P., Montalvo, S., de Albornoz, J.C. (eds.) Notebook Papers of 2nd SEPLN Workshop on Evaluation of Human Language Technologies for Iberian Languages (IBEREVAL), pp. 157–177. CEUR Workshop Proceedings. CEUR-WS.org, 2017, Murcia, Spain, September 2017
Acknowledgements
This work has been partially supported by the Spanish Ministerio de Ciencia, Innovación y Universidades and FEDER founds under AMIC project (TIN2017-85854-C4-2-R), and the Generalitat Valenciana under GUAITA project (INNVA1/2020/61).
The authors thank the organizers of the Stance and Gender Detection in Tweets on Catalan Independence track for provide us the StanceCat corpus.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 Springer Nature Switzerland AG
About this paper
Cite this paper
González, JÁ., Hurtado, LF., Pla, F. (2023). Stance and Gender Detection in Spanish Tweets. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2018. Lecture Notes in Computer Science, vol 13396. Springer, Cham. https://doi.org/10.1007/978-3-031-23793-5_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-23793-5_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-23792-8
Online ISBN: 978-3-031-23793-5
eBook Packages: Computer ScienceComputer Science (R0)