Skip to main content

Stance and Gender Detection in Spanish Tweets

  • Conference paper
  • First Online:
Computational Linguistics and Intelligent Text Processing (CICLing 2018)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13396))

  • 368 Accesses

Abstract

In this paper, we present a deep learning based system for the user profiling and stance detection tasks in Twitter. Stance detection consists in automatically determining from text whether the author is in favor of a given target, against this target, or whether neither inference is likely. The proposed system assembles Convolutional Neural Networks and Long Short-Term Memory neural networks. We use this system to address, with minor changes, both problems. We explore embeddings and one-hot vectors at character level to select the best tweet representation.

We test our approach in the Stance and Gender Detection in Tweets on Catalan Independence track proposed at IberEval 2017 workshop. With the proposed approach, we achieve state-of-the-art results for the Stance detection subtask and the best results published until now for the Gender detection subtask.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cruz, F.L., Troyano, J.A., Pontes, B., Ortega, F.J.: Building layered, multilingual sentiment lexicons at synset and lemma levels. Expert Syst. App. 41(13), 5984–5994 (2014). http://www.sciencedirect.com/science/article/pii/S0957417414001997

  2. Ding, X., Liu, B., Yu, P.S.: A holistic lexicon-based approach to opinion mining. In: Proceedings of the 2008 International Conference on Web Search and Data Mining, pp. 231–240. WSDM 2008, ACM, New York, NY, USA (2008). http://doi.acm.org/10.1145/1341531.1341561

  3. Doetsch, P., Golik, P., Ney, H.: A comprehensive study of batch construction strategies for recurrent neural networks in MXNet. CoRR abs/1705.02414 (2017). http://arxiv.org/abs/1705.02414

  4. Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4), 193–202 (1980). https://doi.org/10.1007/BF00344251

    Article  Google Scholar 

  5. García Cumbreras, M.A., et al.: Overview of TASS 2016. In: Proceedings of TASS 2016, pp. 13–21. CEUR Workshop Proceedings. CEUR-WS.org (2016)

    Google Scholar 

  6. González, J.A., Pla, F., Hurtado, L.F.: ELiRF-UPV at IberEval 2017: stance and gender detection in Tweets. In: Proceedings of the Second Workshop on Evaluation of Human Language Technologies for Iberian Languages (IberEval 2017), pp. 193–198. IberEval 2017, CEUR Workshop Proceedings. CEUR-WS.org (2017)

    Google Scholar 

  7. Grandvalet, Y., Canu, S., Boucheron, S.: Noise injection: theoretical prospects. Neural Comput. 9(5), 1093–1108 (1997). http://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.5.1093

  8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  9. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. CoRR abs/1502.03167 (2015). http://arxiv.org/abs/1502.03167

  10. Lai, M., Cignarella, A.T., Hernández Farías, D.I.: iTACOS at IberEval2017: detecting stance in Catalan and Spanish Tweets. In: Proceedings of the Second Workshop on Evaluation of Human Language Technologies for Iberian Languages (IberEval 2017), pp. 185–192. IberEval 2017, CEUR Workshop Proceedings. CEUR-WS.org (2017)

    Google Scholar 

  11. Martínez Cámara, E., Díaz Galiano, M.C., García Cumbreras, M.A., Vega, M.G.: Overview of TASS 2017. In: Proceedings of TASS 2017, pp. 13–21. CEUR Workshop Proceedings. CEUR-WS.org (2017)

    Google Scholar 

  12. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. CoRR abs/1301.3781 (2013). http://arxiv.org/abs/1301.3781

  13. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. CoRR abs/1310.4546 (2013). http://arxiv.org/abs/1310.4546

  14. Mohammad, S.M., Kiritchenko, S., Sobhani, P., Zhu, X., Cherry, C.: Semeval-2016 task 6: detecting stance in tweets. In: Proceedings of the International Workshop on Semantic Evaluation. SemEval 2016, San Diego, California, June 2016

    Google Scholar 

  15. Mohammad, S.M., Turney, P.D.: Emotions evoked by common words and phrases: using mechanical Turk to create an emotion lexicon. In: Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, pp. 26–34. CAAGET 2010, Association for Computational Linguistics, Stroudsburg, PA, USA (2010). http://dl.acm.org/citation.cfm?id=1860631.1860635

  16. Mohammad, S.M., Turney, P.D.: Crowdsourcing a word-emotion association lexicon. Comput. Intell. 29(3), 436–465 (2013)

    Article  Google Scholar 

  17. Molina-González, M.D., Martínez-Cámara, E., Martín-Valdivia, M.T., Perea-Ortega, J.M.: Semantic orientation for polarity classification in Spanish reviews. Expert Syst. App. 40(18), 7250–7257 (2013). http://www.sciencedirect.com/science/article/pii/S0957417413004752

  18. Nakov, P., Ritter, A., Rosenthal, S., Stoyanov, V., Sebastiani, F.: SemEval-2016 task 4: sentiment analysis in Twitter. In: Proceedings of the 10th International Workshop on Semantic Evaluation. SemEval 2016, Association for Computational Linguistics, San Diego, California, June 2016

    Google Scholar 

  19. Rosenthal, S., Farra, N., Nakov, P.: SemEval-2017 task 4: sentiment analysis in Twitter. In: Proceedings of the 11th International Workshop on Semantic Evaluation. SemEval 2017, Association for Computational Linguistics, Vancouver, Canada, August 2017

    Google Scholar 

  20. Rosso, P., Rangel, F., Potthast, M., Stamatatos, E., Tschuggnall, M., Stein, B.: Overview of PAN’16. In: Fuhr, N., et al. (eds.) CLEF 2016. LNCS, vol. 9822, pp. 332–350. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44564-9_28

    Chapter  Google Scholar 

  21. Saralegi, X., San Vicente, I.: Elhuyar at TASS 2013. In: XXIX Congreso de la Sociedad Espaola de Procesamiento de lenguaje Natural, Workshop on Sentiment Analysis at SEPLN (TASS2013), pp. 143–150 (2013)

    Google Scholar 

  22. Schuster, M., Paliwal, K.: Bidirectional recurrent neural networks. Trans. Sig. Proc. 45(11), 2673–2681 (1997). https://doi.org/10.1109/78.650093

    Article  Google Scholar 

  23. Taulé, M., Martí, M., Rangel, F., Rosso, P., Bosco, C., Patti, V.: Overview of the task of Stance and Gender Detection in Tweets on Catalan Independence at IBEREVAL 2017. In: Martínez, R., Gonzalo, J., Rosso, P., Montalvo, S., de Albornoz, J.C. (eds.) Notebook Papers of 2nd SEPLN Workshop on Evaluation of Human Language Technologies for Iberian Languages (IBEREVAL), pp. 157–177. CEUR Workshop Proceedings. CEUR-WS.org, 2017, Murcia, Spain, September 2017

    Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Spanish Ministerio de Ciencia, Innovación y Universidades and FEDER founds under AMIC project (TIN2017-85854-C4-2-R), and the Generalitat Valenciana under GUAITA project (INNVA1/2020/61).

The authors thank the organizers of the Stance and Gender Detection in Tweets on Catalan Independence track for provide us the StanceCat corpus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lluís-F. Hurtado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

González, JÁ., Hurtado, LF., Pla, F. (2023). Stance and Gender Detection in Spanish Tweets. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2018. Lecture Notes in Computer Science, vol 13396. Springer, Cham. https://doi.org/10.1007/978-3-031-23793-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23793-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23792-8

  • Online ISBN: 978-3-031-23793-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics