Abstract
Automatic deception detection is an important task that has gained momentum in computational linguistics due to its potential applications. In this paper, we propose a simple yet tough to beat multimodal neural model for deception detection. By combining features from different modalities such as video, audio, and text along with Micro-Expression features, we show that detecting deception in real life videos can be more accurate. Experimental results on a dataset of real-life deception videos show that our model outperforms existing techniques for deception detection with an accuracy of 96.14% and ROC-AUC of 0.9799.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Bond, C.F., Jr., DePaulo, B.M.: Accuracy of deception judgments. Pers. Soc. Psychol. Rev. 10, 214–234 (2006)
DePaulo, B.M., Lindsay, J.J., Malone, B.E., Muhlenbruck, L., Charlton, K., Cooper, H.: Cues to deception. Psychol. Bull. 129, 74 (2003)
Cambria, E., Wang, H., White, B.: Guest editorial: big social data analysis. Knowl.-Based Syst. 69, 1–2 (2014)
Smith, P.K., Mahdavi, J., Carvalho, M., Fisher, S., Russell, S., Tippett, N.: Cyberbullying: its nature and impact in secondary school pupils. J. Child Psychol. Psychiatry 49, 376–385 (2008)
Ji, S., Pan, S., Li, X., Cambria, E., Long, G., Huang, Z.: Suicidal ideation detection: a review of machine learning methods and applications. IEEE Trans. Comput. Soc. Syst. 8, 214–226 (2021)
Ji, S., Li, X., Huang, Z., Cambria, E.: Suicidal ideation and mental disorder detection with attentive relation networks. Neural Comput. Appl. 34, 10309–10319 (2022)
Hinduja, S., Patchin, J.W.: Bullying Beyond the Schoolyard: Preventing and Responding to Cyberbullying. Corwin Press, Thousand Oaks (2014)
Baptiste Su, J.: France to impose restrictions on Facebook, Twitter in fight against fake news during elections (2018). [Online; posted 09-January-2018]
Mihalcea, R., Pulman, S.: Linguistic ethnography: identifying dominant word classes in text. In: Gelbukh, A. (ed.) CICLing 2009. LNCS, vol. 5449, pp. 594–602. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00382-0_48
Pennebaker, J.W., Francis, M.E., Booth, R.J.: Linguistic Inquiry and Word Count: LIWC 2001, p. 71. Lawrence Erlbaum Associates, Mahway (2001)
Yancheva, M., Rudzicz, F.: Automatic detection of deception in child-produced speech using syntactic complexity features. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 944–953. Association for Computational Linguistics (2013)
Vrij, A.: Detecting Lies and Deceit: The Psychology of Lying and Implications for Professional Practice. Wiley, Hoboken (2000)
Gannon, T.A., Beech, A.R., Ward, T.: Risk assessment and the polygraph. The use of the polygraph in assessing, treating and supervising sex offenders: a practitioner’s guide, pp. 129–154 (2009)
Ekman, P.: Telling Lies: Clues to Deceit in the Marketplace, Politics, and Marriage, Revised edn. WW Norton & Company, New York (2009)
Caso, L., Maricchiolo, F., Bonaiuto, M., Vrij, A., Mann, S.: The impact of deception and suspicion on different hand movements. J. Nonverbal Behav. 30, 1–19 (2006)
Cohen, D., Beattie, G., Shovelton, H.: Nonverbal indicators of deception: how iconic gestures reveal thoughts that cannot be suppressed. Semiotica 2010, 133–174 (2010)
Pérez-Rosas, V., Abouelenien, M., Mihalcea, R., Burzo, M.: Deception detection using real-life trial data. In: Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, pp. 59–66. ACM (2015)
Wu, Z., Singh, B., Davis, L.S., Subrahmanian, V.: Deception detection in videos. arXiv preprint arXiv:1712.04415 (2017)
Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35, 221–231 (2013)
Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3d convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)
Chaturvedi, I., Satapathy, R., Cavallari, S., Cambria, E.: Fuzzy commonsense reasoning for multimodal sentiment analysis. Pattern Recogn. Lett. 125, 264–270 (2019)
Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882 (2014)
Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network for modelling sentences. arXiv preprint arXiv:1404.2188 (2014)
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)
Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-2010), pp. 807–814 (2010)
Eyben, F., Weninger, F., Gross, F., Schuller, B.: Recent developments in opensmile, the Munich open-source multimedia feature extractor. In: Proceedings of the 21st ACM International Conference on Multimedia. MM 2013, pp. 835–838. ACM, New York (2013)
Norskog, L.: Sound exchange (1991). http://sox.sourceforge.net/
Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 Springer Nature Switzerland AG
About this paper
Cite this paper
Krishnamurthy, G., Majumder, N., Poria, S., Cambria, E. (2023). A Deep Learning Approach for Multimodal Deception Detection. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2018. Lecture Notes in Computer Science, vol 13396. Springer, Cham. https://doi.org/10.1007/978-3-031-23793-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-23793-5_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-23792-8
Online ISBN: 978-3-031-23793-5
eBook Packages: Computer ScienceComputer Science (R0)