Skip to main content

A Deep Learning Approach for Multimodal Deception Detection

  • Conference paper
  • First Online:
Computational Linguistics and Intelligent Text Processing (CICLing 2018)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13396))

Abstract

Automatic deception detection is an important task that has gained momentum in computational linguistics due to its potential applications. In this paper, we propose a simple yet tough to beat multimodal neural model for deception detection. By combining features from different modalities such as video, audio, and text along with Micro-Expression features, we show that detecting deception in real life videos can be more accurate. Experimental results on a dataset of real-life deception videos show that our model outperforms existing techniques for deception detection with an accuracy of 96.14% and ROC-AUC of 0.9799.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.uscourts.gov.

References

  1. Bond, C.F., Jr., DePaulo, B.M.: Accuracy of deception judgments. Pers. Soc. Psychol. Rev. 10, 214–234 (2006)

    Article  Google Scholar 

  2. DePaulo, B.M., Lindsay, J.J., Malone, B.E., Muhlenbruck, L., Charlton, K., Cooper, H.: Cues to deception. Psychol. Bull. 129, 74 (2003)

    Article  Google Scholar 

  3. Cambria, E., Wang, H., White, B.: Guest editorial: big social data analysis. Knowl.-Based Syst. 69, 1–2 (2014)

    Article  Google Scholar 

  4. Smith, P.K., Mahdavi, J., Carvalho, M., Fisher, S., Russell, S., Tippett, N.: Cyberbullying: its nature and impact in secondary school pupils. J. Child Psychol. Psychiatry 49, 376–385 (2008)

    Article  Google Scholar 

  5. Ji, S., Pan, S., Li, X., Cambria, E., Long, G., Huang, Z.: Suicidal ideation detection: a review of machine learning methods and applications. IEEE Trans. Comput. Soc. Syst. 8, 214–226 (2021)

    Article  Google Scholar 

  6. Ji, S., Li, X., Huang, Z., Cambria, E.: Suicidal ideation and mental disorder detection with attentive relation networks. Neural Comput. Appl. 34, 10309–10319 (2022)

    Google Scholar 

  7. Hinduja, S., Patchin, J.W.: Bullying Beyond the Schoolyard: Preventing and Responding to Cyberbullying. Corwin Press, Thousand Oaks (2014)

    Google Scholar 

  8. Baptiste Su, J.: France to impose restrictions on Facebook, Twitter in fight against fake news during elections (2018). [Online; posted 09-January-2018]

    Google Scholar 

  9. Mihalcea, R., Pulman, S.: Linguistic ethnography: identifying dominant word classes in text. In: Gelbukh, A. (ed.) CICLing 2009. LNCS, vol. 5449, pp. 594–602. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00382-0_48

    Chapter  Google Scholar 

  10. Pennebaker, J.W., Francis, M.E., Booth, R.J.: Linguistic Inquiry and Word Count: LIWC 2001, p. 71. Lawrence Erlbaum Associates, Mahway (2001)

    Google Scholar 

  11. Yancheva, M., Rudzicz, F.: Automatic detection of deception in child-produced speech using syntactic complexity features. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 944–953. Association for Computational Linguistics (2013)

    Google Scholar 

  12. Vrij, A.: Detecting Lies and Deceit: The Psychology of Lying and Implications for Professional Practice. Wiley, Hoboken (2000)

    Google Scholar 

  13. Gannon, T.A., Beech, A.R., Ward, T.: Risk assessment and the polygraph. The use of the polygraph in assessing, treating and supervising sex offenders: a practitioner’s guide, pp. 129–154 (2009)

    Google Scholar 

  14. Ekman, P.: Telling Lies: Clues to Deceit in the Marketplace, Politics, and Marriage, Revised edn. WW Norton & Company, New York (2009)

    Google Scholar 

  15. Caso, L., Maricchiolo, F., Bonaiuto, M., Vrij, A., Mann, S.: The impact of deception and suspicion on different hand movements. J. Nonverbal Behav. 30, 1–19 (2006)

    Article  Google Scholar 

  16. Cohen, D., Beattie, G., Shovelton, H.: Nonverbal indicators of deception: how iconic gestures reveal thoughts that cannot be suppressed. Semiotica 2010, 133–174 (2010)

    Article  Google Scholar 

  17. Pérez-Rosas, V., Abouelenien, M., Mihalcea, R., Burzo, M.: Deception detection using real-life trial data. In: Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, pp. 59–66. ACM (2015)

    Google Scholar 

  18. Wu, Z., Singh, B., Davis, L.S., Subrahmanian, V.: Deception detection in videos. arXiv preprint arXiv:1712.04415 (2017)

  19. Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35, 221–231 (2013)

    Article  Google Scholar 

  20. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3d convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)

    Google Scholar 

  21. Chaturvedi, I., Satapathy, R., Cavallari, S., Cambria, E.: Fuzzy commonsense reasoning for multimodal sentiment analysis. Pattern Recogn. Lett. 125, 264–270 (2019)

    Article  Google Scholar 

  22. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882 (2014)

  23. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network for modelling sentences. arXiv preprint arXiv:1404.2188 (2014)

  24. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  25. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-2010), pp. 807–814 (2010)

    Google Scholar 

  26. Eyben, F., Weninger, F., Gross, F., Schuller, B.: Recent developments in opensmile, the Munich open-source multimedia feature extractor. In: Proceedings of the 21st ACM International Conference on Multimedia. MM 2013, pp. 835–838. ACM, New York (2013)

    Google Scholar 

  27. Norskog, L.: Sound exchange (1991). http://sox.sourceforge.net/

  28. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Cambria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krishnamurthy, G., Majumder, N., Poria, S., Cambria, E. (2023). A Deep Learning Approach for Multimodal Deception Detection. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2018. Lecture Notes in Computer Science, vol 13396. Springer, Cham. https://doi.org/10.1007/978-3-031-23793-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23793-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23792-8

  • Online ISBN: 978-3-031-23793-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics