Skip to main content

Finding Word Sense Embeddings of Known Meaning

  • Conference paper
  • First Online:
Computational Linguistics and Intelligent Text Processing (CICLing 2018)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13397))

  • 209 Accesses

Abstract

Word sense embeddings are vector representations of polysemous words – words with multiple meanings. These induced sense embeddings, however, do not necessarily correspond to any dictionary senses of the word. To overcome this, we propose a method to find new sense embeddings with known meaning. We term this method refitting, as the new embedding is fitted to model the meaning of a target word in an example sentence. The new lexically refitted embeddings are learnt using the probabilities of the existing induced sense embeddings, as well as their vector values. Our contributions are threefold: (1) The refitting method to find the new sense embeddings; (2) a novel smoothing technique, for use with the refitting method; and (3) a new similarity measure for words in context, defined by using the refitted sense embeddings. We show how our techniques improve the performance of the Adaptive Skip-Gram sense embeddings for word similarly evaluation; and how they allow the embeddings to be used for lexical word sense disambiguation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As this part of our method is used with both the unsupervised senses and the lexical senses, referred to as \(\textbf{u}\) and \(\textbf{l}\) respectively in other parts of the paper, here we use a general sense \(\textbf{s}\) to avoid confusion.

  2. 2.

    https://github.com/sbos/AdaGram.jl.

  3. 3.

    https://github.com/tanmaykm/Word2Vec.jl/.

  4. 4.

    It should be noted, though, that the number of meanings is not normally distributed [23].

References

  1. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv:1301.3781 (2013)

  2. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP 2014), pp. 1532–1543 (2014)

    Google Scholar 

  3. Reisinger, J., Mooney, R.J.: Multi-prototype vector-space models of word meaning. In: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 109–117. Association for Computational Linguistics (2010)

    Google Scholar 

  4. Huang, E.H., Socher, R., Manning, C.D., Ng, A.Y.: Improving word representations via global context and multiple word prototypes. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers-Vol. 1, pp. 873–882. Association for Computational Linguistics (2012)

    Google Scholar 

  5. Tian, F., et al.: A probabilistic model for learning multi-prototype word embeddings. In: COLING, pp. 151–160 (2014)

    Google Scholar 

  6. Bartunov, S., Kondrashkin, D., Osokin, A., Vetrov, D.P.: Breaking sticks and ambiguities with adaptive skip-gram. CoRR abs/1502.07257 (2015)

    Google Scholar 

  7. Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38, 39–41 (1995)

    Article  Google Scholar 

  8. Véronis, J.: A study of polysemy judgements and inter-annotator agreement. In: Programme and Advanced Papers of the Senseval workshop, pp. 2–4 (1998)

    Google Scholar 

  9. Iacobacci, I., Pilehvar, M.T., Navigli, R.: Sensembed: learning sense embeddings for word and relational similarity. In: Proceedings of ACL, pp. 95–105 (2015)

    Google Scholar 

  10. Moro, A., Raganato, A., Navigli, R.: Entity linking meets word sense disambiguation: a unified approach. Trans. Assoc. Comput. Linguist. 2, 231–244 (2014)

    Article  Google Scholar 

  11. Chen, X., Liu, Z., Sun, M.: A unified model for word sense representation and disambiguation. In: EMNLP, pp. 1025–1035. Citeseer (2014)

    Google Scholar 

  12. Agirre, E., Martínez, D., De Lacalle, O.L., Soroa, A.: Evaluating and optimizing the parameters of an unsupervised graph-based WSD algorithm. In: Proceedings of the First Workshop on Graph Based Methods for Natural Language Processing, Association for Computational Linguistics, pp. 89–96 (2006)

    Google Scholar 

  13. Agirre, E., Soroa, A.: Semeval-2007 task 02: evaluating word sense induction and discrimination systems. In: Proceedings of the 4th International Workshop on Semantic Evaluations. SemEval 2007, Stroudsburg, PA, USA, pp. 7–12. Association for Computational Linguistics (2007)

    Google Scholar 

  14. Nocedal, J.: Updating quasi-newton matrices with limited storage. Math. Comput. 35, 773–782 (1980)

    Article  Google Scholar 

  15. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  16. Mikolov, T., Yih, W.t., Zweig, G.: Linguistic regularities in continuous space word representations. In: HLT-NAACL, pp. 746–751 (2013)

    Google Scholar 

  17. Bengio, Y., Ducharme, R., Vincent, P., Janvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3, 137–186 (2003)

    Google Scholar 

  18. Rosenfeld, R.: Two decades of statistical language modeling: where do we go from here? Proc. IEEE 88, 1270–1278 (2000)

    Article  Google Scholar 

  19. Zipf, G.: Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology. Addison-Wesley Press, Cambridge (1949)

    Google Scholar 

  20. Kilgarriff, A.: How dominant is the commonest sense of a word? In: Sojka, P., Kopeček, I., Pala, K. (eds.) TSD 2004. LNCS (LNAI), vol. 3206, pp. 103–111. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30120-2_14

    Chapter  Google Scholar 

  21. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing. SIAM Rev. 59, 65–98 (2014)

    Article  Google Scholar 

  22. Neelakantan, A., Shankar, J., Passos, A., McCallum, A.: Efficient non-parametric estimation of multiple embeddings per word in vector space. arXiv preprint arXiv:1504.06654 (2015)

  23. Zipf, G.K.: The meaning-frequency relationship of words. J. Gen. Psychol. 33, 251–256 (1945)

    Article  Google Scholar 

  24. Tengi, R.I.: Design and implementation of the WordNet lexical database and searching software. In: WordNet: An Electronic Lexical Database, p. 105. The MIT Press, Cambridge (1998)

    Google Scholar 

  25. Navigli, R., Litkowski, K.C., Hargraves, O.: Semeval-2007 task 07: coarse-grained English all-words task. In: Proceedings of the 4th International Workshop on Semantic Evaluations. SemEval 2007, Stroudsburg, PA, USA, Association for Computational Linguistics, pp. 30–35 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

White, L., Togneri, R., Liu, W., Bennamoun, M. (2023). Finding Word Sense Embeddings of Known Meaning. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2018. Lecture Notes in Computer Science, vol 13397. Springer, Cham. https://doi.org/10.1007/978-3-031-23804-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23804-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23803-1

  • Online ISBN: 978-3-031-23804-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics