Skip to main content

Emotions Are Universal: Learning Sentiment Based Representations of Resource-Poor Languages Using Siamese Networks

  • Conference paper
  • First Online:
Computational Linguistics and Intelligent Text Processing (CICLing 2018)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13397))

  • 295 Accesses

Abstract

Machine learning approaches in sentiment analysis principally rely on the abundance of resources. To limit this dependence, we propose a novel method called Siamese Network Architecture for Sentiment Analysis (SNASA) to learn representations of resource-poor languages by jointly training them with resource-rich languages using a siamese network.

SNASA model consists of twin Bi-directional Long Short-Term Memory Recurrent Neural Networks (Bi-LSTM RNN) with shared parameters joined by a contrastive loss function, based on a similarity metric. The model learns the sentence representations of resource-poor and resource-rich language in a common sentiment space by using a similarity metric based on their individual sentiments. The model, hence, projects sentences with similar sentiment closer to each other and the sentences with different sentiment farther from each other. Experiments on large-scale datasets of resource-rich languages - English and Spanish and resource-poor languages - Hindi and Telugu reveal that SNASA outperforms the state-of-the-art sentiment analysis approaches based on distributional semantics, semantic rules, lexicon lists and deep neural network representations without shared parameters.

N. Choudhary and R. Singh—These authors have contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The Many Tongues of Twitter - MIT Technology Review.

References

  1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  2. Balamurali, A., Joshi, A., Bhattacharyya, P.: Cross-lingual sentiment analysis for indian languages using linked wordnets. In: Proceedings of COLING 2012: Posters, pp. 73–82 (2012)

    Google Scholar 

  3. Boden, M.: A guide to recurrent neural networks and backpropagation. the Dallas project (2002)

    Google Scholar 

  4. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification using a" siamese" time delay neural network. In: Advances in Neural Information Processing Systems, pp. 737–744 (1994)

    Google Scholar 

  5. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on. vol. 1, pp. 539–546. IEEE (2005)

    Google Scholar 

  6. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

  7. Das, A., Yenala, H., Chinnakotla, M., Shrivastava, M.: Together we stand: Siamese networks for similar question retrieval. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). vol. 1, pp. 378–387 (2016)

    Google Scholar 

  8. Dhingra, B., Zhou, Z., Fitzpatrick, D., Muehl, M., Cohen, W.W.: Tweet2vec: Character-based distributed representations for social media. arXiv preprint arXiv:1605.03481 (2016)

  9. Dyer, C., Ballesteros, M., Ling, W., Matthews, A., Smith, N.A.: Transition-based dependency parsing with stack long short-term memory. arXiv preprint arXiv:1505.08075 (2015)

  10. Gao, Y., Rong, W., Shen, Y., Xiong, Z.: Convolutional neural network based sentiment analysis using adaboost combination. In: Neural Networks (IJCNN), 2016 International Joint Conference on, pp. 1333–1338. IEEE (2016)

    Google Scholar 

  11. Joshi, A., Balamurali, A., Bhattacharyya, P.: A fall-back strategy for sentiment analysis in hindi: a case study. In: Proceedings of the 8th ICON (2010)

    Google Scholar 

  12. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882 (2014)

  13. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures for named entity recognition. arXiv preprint arXiv:1603.01360 (2016)

  14. LeCun, Y., Huang, F.J.: Loss functions for discriminative training of energy-based models. In: AIStats (2005)

    Google Scholar 

  15. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in neural information processing systems, pp. 3111–3119 (2013)

    Google Scholar 

  16. Mogadala, A., Varma, V.: Retrieval approach to extract opinions about people from resource scarce language news articles. In: Proceedings of the First International Workshop on Issues of Sentiment Discovery and Opinion Mining, p. 4. ACM (2012)

    Google Scholar 

  17. Mozetič, I., Grčar, M., Smailović, J.: Multilingual twitter sentiment classification: the role of human annotators. PloS one 11(5), e0155036 (2016)

    Article  Google Scholar 

  18. Mukku, S.S., Choudhary, N., Mamidi, R.: Enhanced sentiment classification of telugu text using ml techniques. In: SAAIP@ IJCAI, pp. 29–34 (2016)

    Google Scholar 

  19. Mukku, S.S., Oota, S.R., Mamidi, R.: Tag me a label with multi-arm: active learning for Telugu sentiment analysis. In: Bellatreche, L., Chakravarthy, S. (eds.) DaWaK 2017. LNCS, vol. 10440, pp. 355–367. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64283-3_26

    Chapter  Google Scholar 

  20. Pang, B., Lee, L.: Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In: Proceedings of the 43rd annual meeting on association for computational linguistics, pp. 115–124. Association for Computational Linguistics (2005)

    Google Scholar 

  21. Sarkar, K., Chakraborty, S.: A sentiment analysis system for Indian language tweets. In: Prasath, R., Vuppala, A.K., Kathirvalavakumar, T. (eds.) MIKE 2015. LNCS (LNAI), vol. 9468, pp. 694–702. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26832-3_66

    Chapter  Google Scholar 

  22. Socher, R., Huval, B., Manning, C.D., Ng, A.Y.: Semantic compositionality through recursive matrix-vector spaces. In: Proceedings of the 2012 joint conference on empirical methods in natural language processing and computational natural language learning, pp. 1201–1211. Association for Computational Linguistics (2012)

    Google Scholar 

  23. Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 37(2), 267–307 (2011)

    Article  Google Scholar 

  24. Vinyals, O., Kaiser, Ł., Koo, T., Petrov, S., Sutskever, I., Hinton, G.: Grammar as a foreign language. In: Advances in Neural Information Processing Systems, pp. 2773–2781 (2015)

    Google Scholar 

  25. Wang, P., Qian, Y., Soong, F.K., He, L., Zhao, H.: Learning distributed word representations for bidirectional lstm recurrent neural network. In: HLT-NAACL, pp. 527–533 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurendra Choudhary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Choudhary, N., Singh, R., Bindlish, I., Shrivastava, M. (2023). Emotions Are Universal: Learning Sentiment Based Representations of Resource-Poor Languages Using Siamese Networks. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2018. Lecture Notes in Computer Science, vol 13397. Springer, Cham. https://doi.org/10.1007/978-3-031-23804-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23804-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23803-1

  • Online ISBN: 978-3-031-23804-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics