Abstract
We present a novel two-staged method that employs various 2D-based techniques to deal with the 3D segmentation task. In most of the previous challenges, it is unlikely for 2D CNNs to be comparable with other 3D CNNs since 2D models can hardly capture temporal information. In light of that, we propose using the recent state-of-the-art technique in video object segmentation, combining it with other semi-supervised training techniques to leverage the extensive unlabeled data. Moreover, we introduce a way to generate pseudo-labeled data that is both plausible and consistent for further retraining by using uncertainty estimation. Our code is publicly available at Github.
M.-K. Pham and T.-L. Nguyen-Ho—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
NIH Pancreas. https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT (2020). Accessed Aug 2020
Baba, Y., Murphy, A.: Windowing (CT) (March 2017). https://doi.org/10.53347/rid-52108. http://dx.doi.org/10.53347/rID-52108
Berman, M., Triki, A.R., Blaschko, M.B.: The lovász-softmax loss: a tractable surrogate for the optimization of the intersection-over-union measure in neural networks. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018, pp. 4413–4421. Computer Vision Foundation / IEEE Computer Society (2018). https://doi.org/10.1109/CVPR.2018.00464, http://openaccess.thecvf.com/content_cvpr_2018/html/Berman_The_LovaSz-Softmax_Loss_CVPR_2018_paper.html
Bilic, P., et al.: The liver tumor segmentation benchmark (LITS). arXiv preprint arXiv:1901.04056 (2019)
Chen, J., et al.: Transunet: transformers make strong encoders for medical image segmentation. CoRR abs/2102.04306 (2021., https://arxiv.org/abs/2102.04306
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with Atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49
Chen, X., Yuan, Y., Zeng, G., Wang, J.: Semi-supervised semantic segmentation with cross pseudo supervision. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19–25, 2021. pp. 2613–2622. Computer Vision Foundation / IEEE (2021). https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Semi-Supervised_Semantic_Segmentation_With_Cross_Pseudo_Supervision_CVPR_2021_paper.html
Cheng, H.K., Tai, Y., Tang, C.: Rethinking space-time networks with improved memory coverage for efficient video object segmentation. In: Ranzato, M., Beygelzimer, A., Dauphin, Y.N., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021(December), pp. 6–14, 2021. virtual. pp. 11781–11794 (2021). https://proceedings.neurips.cc/paper/2021/hash/61b4a64be663682e8cb037d9719ad8cd-Abstract.html
Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)
Heller, N., et al.: The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: Results of the kits19 challenge. Med. Image Anal. 67, 101821 (2021)
Heller, N., et al.: An international challenge to use artificial intelligence to define the state-of-the-art in kidney and kidney tumor segmentation in ct imaging. Proc. Am. Soc. Clin. Oncol. 38(6), 626–626 (2020)
Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)
Luo, X., Hu, M., Song, T., Wang, G., Zhang, S.: Semi-supervised medical image segmentation via cross teaching between CNN and transformer. CoRR abs/2112.04894 (2021), https://arxiv.org/abs/2112.04894
Ma, J., Chen, J., Ng, M., Huang, R., Li, Y., Li, C., Yang, X., Martel, A.L.: Loss odyssey in medical image segmentation. Med. Image Anal. 71, 102035 (2021)
Ma, J., Zhang, Y., Gu, S., Zhu, C., Ge, C., Zhang, Y., An, X., Wang, C., Wang, Q., Liu, X., Cao, S., Zhang, Q., Liu, S., Wang, Y., Li, Y., He, J., Yang, X.: Abdomenct-1k: Is abdominal organ segmentation a solved problem? IEEE Trans. Pattern Anal. Mach. Intell. 44(10), 6695–6714 (2022)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241 (2015)
Roth, H., Farag, A., Turkbey, E., Lu, L., Liu, J., Summers, R.: Data from pancreas-CT. The Cancer Imaging Archive (2016)
Roth, H.R., Lu, L., Farag, A., Shin, H.-C., Liu, J., Turkbey, E.B., Summers, R.M.: DeepOrgan: multi-level deep convolutional networks for automated pancreas segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 556–564. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_68
Simpson, A.L., et al.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv preprint arXiv:1902.09063 (2019)
Wang, J., Chen, Z., Wang, L., Zhou, Q.: An active learning with two-step query for medical image segmentation. In: 2019 International Conference on Medical Imaging Physics and Engineering (ICMIPE), pp. 1–5. IEEE (2019)
Wu, Z., Shen, C., van den Hengel, A.: High-performance semantic segmentation using very deep fully convolutional networks. CoRR abs/1604.04339 (2016), http://arxiv.org/abs/1604.04339
Acknowledgements
This research is funded by Vietnam National University Ho Chi Minh City (VNU-HCM) under grant number DS2020-42-01.
The authors of this paper declare that the segmentation method they implemented for participation in the FLARE 2022 challenge has not used any pre-trained models nor additional datasets other than those provided by the organizers.
Furthermore, no manual intervention has been made in the contribution to the results of the proposed method.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Pham, MK., Nguyen-Ho, TL., Dao, T.T.P., Nguyen, TC., Tran, MT. (2022). Semi-supervised Organ Segmentation with Mask Propagation Refinement and Uncertainty Estimation for Data Generation. In: Ma, J., Wang, B. (eds) Fast and Low-Resource Semi-supervised Abdominal Organ Segmentation. FLARE 2022. Lecture Notes in Computer Science, vol 13816. Springer, Cham. https://doi.org/10.1007/978-3-031-23911-3_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-23911-3_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-23910-6
Online ISBN: 978-3-031-23911-3
eBook Packages: Computer ScienceComputer Science (R0)