Skip to main content

Coarse to Fine Automatic Segmentation of Abdominal Multiple Organs

  • Conference paper
  • First Online:
Fast and Low-Resource Semi-supervised Abdominal Organ Segmentation (FLARE 2022)

Abstract

Abdominal multi-organ segmentation is fast becoming a key instrument in preoperative diagnosis. Using the results of abdominal CT image segmentation for three-dimensional reconstruction is an intuitive and accurate method for surgical planning. In this paper, we propose a stable three-stage fast automatic segmentation method for abdominal 13 organs: liver, spleen, pancreas, right kidney, left kidney, stomach, gallbladder, esophagus, aorta, inferior vena cava, right adrenal gland, left adrenal gland, and duodenum. Our method includes preprocessing the CT data, segmenting the multi-organ and post-processing the segmentation outputs. The results on the test set show that the average DSC performance is about 0.766. The average time and GPU memory consumption for each case is 81.42 s and 1953 MB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  2. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)

    Article  Google Scholar 

  3. Couteaux, V., et al.: Kidney cortex segmentation in 2D CT with U-Nets ensemble aggregation. Diagn. Interv. Imaging 100(4), 211–217 (2019)

    Article  Google Scholar 

  4. Fu, Y., et al.: A novel MRI segmentation method using CNN-based correction network for MRI-guided adaptive radiotherapy. Med. Phys. 45(11), 5129–5137 (2018)

    Article  Google Scholar 

  5. Heller, N., et al.: The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: results of the KiTS19 challenge. Med. Image Anal. 67, 101821 (2021)

    Article  Google Scholar 

  6. Heller, N., et al.: An international challenge to use artificial intelligence to define the state-of-the-art in kidney and kidney tumor segmentation in CT imaging 38(6), 626 (2020)

    Google Scholar 

  7. Isensee, F., Jäger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: Automated design of deep learning methods for biomedical image segmentation. arXiv preprint arXiv:1904.08128 (2020)

  8. Kim, D.Y., Park, J.W.: Computer-aided detection of kidney tumor on abdominal computed tomography scans. Acta Radiol. 45(7), 791–795 (2004)

    Article  Google Scholar 

  9. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Google Scholar 

  10. Li, J., Zhu, S.A., Bin, H.: Medical image segmentation techniques. J. Biomed. Eng. 23(4), 891–894 (2006)

    Google Scholar 

  11. Ma, J., et al.: Abdomenct-1k: Is abdominal organ segmentation a solved problem. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2021)

    Google Scholar 

  12. Micheli-Tzanakou, E.: Artificial neural networks: an overview. Netw. Comput. Neural Syst. 22(1–4), 208–230 (2011)

    Google Scholar 

  13. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE, Stanford, CA, USA (2016)

    Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  15. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017)

    Article  Google Scholar 

  16. Simpson, A.L., et al.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv preprint arXiv:1902.09063 (2019)

  17. Yang, Y., Jiang, H., Sun, Q.: A multiorgan segmentation model for CT volumes via full convolution-deconvolution network. BioMed. Res. Int. 2017, 6941306 (2017)

    Google Scholar 

  18. Zarándy, Á., Rekeczky, C., Szolgay, P., Chua, L.O.: Overview of CNN research: 25 years history and the current trends. In: 2015 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 401–404. IEEE, Lisbon, Portugal (2015)

    Google Scholar 

  19. Zhang, J., Zong, C., et al.: Deep neural networks in machine translation: an overview. IEEE Intell. Syst. 30(5), 16–25 (2015)

    Article  Google Scholar 

  20. Zhao, C., Carass, A., Lee, J., He, Y., Prince, J.L.: Whole brain segmentation and labeling from CT using synthetic MR images. In: Wang, Q., Shi, Y., Suk, H.-I., Suzuki, K. (eds.) MLMI 2017. LNCS, vol. 10541, pp. 291–298. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67389-9_34

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors of this paper declare that the segmentation method they implemented for participation in the FLARE 2022 challenge has not used any pre-trained models nor additional datasets other than those provided by the organizers. The proposed solution is fully automatic without any manual intervention. This work was supported by Natural Science Foundation of China (Grant No. 62173014) and Natural Science Foundation of Beijing Municipality (Grant No. L192057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junchen Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lv, Y., Ning, Y., Wang, J. (2022). Coarse to Fine Automatic Segmentation of Abdominal Multiple Organs. In: Ma, J., Wang, B. (eds) Fast and Low-Resource Semi-supervised Abdominal Organ Segmentation. FLARE 2022. Lecture Notes in Computer Science, vol 13816. Springer, Cham. https://doi.org/10.1007/978-3-031-23911-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23911-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23910-6

  • Online ISBN: 978-3-031-23911-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics