Skip to main content

Uncertainty-aware Mean Teacher Framework with Inception and Squeeze-and-Excitation Block for MICCAI FLARE22 Challenge

  • Conference paper
  • First Online:
Fast and Low-Resource Semi-supervised Abdominal Organ Segmentation (FLARE 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13816))

Abstract

Semi-supervised learning has attracted extensive attention in the field of medical image analysis. However, as a fundamental task, semi-supervised segmentation has not been investigated sufficiently in the field of multi-organ segmentation from abdominal CT. Therefore, we propose a novel uncertainty-aware mean teacher framework with inception and squeeze-and-excitation block (UMT-ISE). Specifically, the UMT-ISE consists of a teacher model and a student model, in which the student model learns from the teacher model by minimizing segmentation loss and consistency loss. Additionaly, we adopt an uncertainty-aware algorithm to make the student model learn accurate and reliable targets by making full use of uncertainty information. To capture multi-scale features, the inception and squeeze-and-excitation block are incoporated into the UMT-ISE. It is worth noting that abdominal CT of test cases are first extracted before multi-organ segmentation in the inference phase, which significantly improves segmentation accuracy. We implement experiments on the FLARE22 challenge. Our method achieves mean DSC of 0.7465 on 13 abdominal organ segmentation tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  2. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)

    Article  Google Scholar 

  3. Cui, W., et al.: Semi-supervised brain lesion segmentation with an adapted mean teacher model. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 554–565. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_43

    Chapter  Google Scholar 

  4. Fu, Y., et al.: A novel MRI segmentation method using CNN-based correction network for MRI-guided adaptive radiotherapy. Med. Phys. 45(11), 5129–5137 (2018)

    Article  Google Scholar 

  5. Ganaye, P.-A., Sdika, M., Benoit-Cattin, H.: Semi-supervised learning for segmentation under semantic constraint. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 595–602. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_68

    Chapter  Google Scholar 

  6. Heimann, T., et al.: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans. Med. Imaging 28(8), 1251–1265 (2009)

    Article  Google Scholar 

  7. Heller, N., et al.: The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: results of the kits19 challenge. Med. Image Anal. 67, 101821 (2021)

    Article  Google Scholar 

  8. Heller, N., et al.: An international challenge to use artificial intelligence to define the state-of-the-art in kidney and kidney tumor segmentation in CT imaging. Proc. Am. Soc. Clin. Oncol. 38(6), 626–626 (2020)

    Article  Google Scholar 

  9. Kirbas, C., Quek, F.: A review of vessel extraction techniques and algorithms. ACM Comput. Surv. (CSUR) 36(2), 81–121 (2004)

    Article  Google Scholar 

  10. Ma, J., et al.: Fast and low-GPU-memory abdomen CT organ segmentation: the flare challenge. Med. Image Anal. 82, 102616 (2022). https://doi.org/10.1016/j.media.2022.102616

    Article  Google Scholar 

  11. Ma, J., et al.: Abdomenct-1k: is abdominal organ segmentation a solved problem? IEEE Trans. Pattern Anal. Mach. Intell. 44(10), 6695–6714 (2022)

    Google Scholar 

  12. Milletari, F., Navab, N., Ahmadi, S.-A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571 (2016)

    Google Scholar 

  13. Oktay, O., et al.: Attention u-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  14. Simpson, A.L., et al.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv preprint arXiv:1902.09063 (2019)

  15. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  16. Wang, Y., Zhou, Y., Shen, W., Park, S., Fishman, E.K., Yuille, A.L.: Abdominal multi-organ segmentation with organ-attention networks and statistical fusion. Med. Image Anal. 55, 88–102 (2019)

    Article  Google Scholar 

  17. Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 605–613. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_67

    Chapter  Google Scholar 

Download references

Acknowledgment

The authors of this paper declare that the segmentation method they implemented for participation in the FLARE22 challenge didn’t use any pre-trained models or additional datasets other than those provided by the organizers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Meng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meng, H., Zhao, H., Yu, Z., Li, Q., Niu, J. (2022). Uncertainty-aware Mean Teacher Framework with Inception and Squeeze-and-Excitation Block for MICCAI FLARE22 Challenge. In: Ma, J., Wang, B. (eds) Fast and Low-Resource Semi-supervised Abdominal Organ Segmentation. FLARE 2022. Lecture Notes in Computer Science, vol 13816. Springer, Cham. https://doi.org/10.1007/978-3-031-23911-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23911-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23910-6

  • Online ISBN: 978-3-031-23911-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics