Skip to main content

Dynamical Criticality in Growing Networks

  • Conference paper
  • First Online:
Artificial Life and Evolutionary Computation (WIVACE 2021)

Abstract

The principle of dynamical criticality is a very important hypotheses in biology, and it therefore deserves a thorough investigation. Testing the principle in real biological cases can be far from trivial: therefore, in this work we make use of the Random Boolean Network framework, which has been extensively used to model genetic regulatory networks, and which has since become one of the most used models in the field of complex systems. We subject several RBN ensembles to evolutionary changes: the key research questions are whether initially critical networks will grow faster than ordered or chaotic ones, and whether evolution can influence the dynamic regime, and in which direction. The results obtained so far indicate that critical systems perform well in the analyzed tasks. In the case of two connections per node, the best performances are those of critical systems, while increasing the value of the connectivity there seems to be a slight shift towards more disordered regimes (albeit still close to the critical one).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969)

    Article  MathSciNet  Google Scholar 

  2. Kauffman, S.A.: The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, Oxford (1993)

    Book  Google Scholar 

  3. Kauffman, S.A.: At Home in the Universe: The Search for Laws of Self-Organization and Complexity. Oxford University Press, Oxford (1995)

    Google Scholar 

  4. Packard, N.H.: Adaptation toward the edge of chaos. Dyn. Patterns Complex Syst. 212, 293–301 (1988)

    MathSciNet  Google Scholar 

  5. Langton, C.: Life at the edge of chaos. Artificial life II. Santa Fe Institute Studies in the Science of Complexity (1992)

    Google Scholar 

  6. Crutchfield, J.P., Young, K.: Computation at the Onset of Chaos, Complexity, Entropy, and Physics of Information. Addison Wesley, New Jerseya (1990)

    Google Scholar 

  7. Serra, R., Villani, M., Semeria, A.: Genetic network models and statistical properties of gene expression data in knock-out experiments. J. Theor. Biol. 227(1), 149–157 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Serra, R., Villani, M., Graudenzi, A., Kauffman, S.A.: Why a simple model of genetic regulatory networks describes the distribution of avalanches in gene expression data. J. Theor. Biol. 246(3), 449–460 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Shmulevich, I., Kauffman, S.A., Aldana, M.: Eukaryotic cells are dynamically ordered or critical but not chaotic. Proc. Natl. Acad. Sci. 102(38), 13439–13444 (2005)

    Article  Google Scholar 

  10. Daniels, B.C., et al.: Criticality distinguishes the ensemble of biological regulatory networks. Phys. Rev. Lett. 121(13), 138102 (2018)

    Article  Google Scholar 

  11. Villani, M., La Rocca, L., Kauffman, S.A., Serra, R.: Dynamical criticality in gene regulatory networks. Complexity (2018)

    Google Scholar 

  12. Roli, A., Villani, M., Filisetti, A., Serra, R.: Dynamical criticality: overview and open questions. J. Syst. Sci. Complex. 31(3), 647–663 (2018)

    Article  MATH  Google Scholar 

  13. Munoz, M.A.: Colloquium: criticality and dynamical scaling in living systems. Rev. Mod. Phys. 90(3), 031001 (2018)

    Article  MathSciNet  Google Scholar 

  14. Aldana, M., Coppersmith, S., Kadanoff, L.P.: Boolean dynamics with random couplings. In: Kaplan, E., Marsden, J.E., Sreenivasan, K.R. (eds.) Perspectives and Problems in Nolinear Science, pp. 23–89. Springer, New York (2003). https://doi.org/10.1007/978-0-387-21789-5_2

  15. Aldana, M., Balleza, E., Kauffman, S., Resendiz, O.: Robustness and evolvability in genetic regulatory networks. J. Theor. Biol. 245(3), 433–448 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Benedettini, S., et al.: Dynamical regimes and learning properties of evolved Boolean networks. Neurocomputing 99, 111–123 (2013)

    Article  Google Scholar 

  17. Szejka, A., Drossel, B.: Evolution of canalizing Boolean networks. Eur. Phys. J. B 56(4), 373–380 (2007)

    Article  Google Scholar 

  18. Mihaljev, T., Drossel, B.: Evolution of a population of random Boolean networks. Eur. Phys. J. B 67(2), 259–267 (2009)

    Article  MATH  Google Scholar 

  19. Braccini, M., Roli, A., Villani, M., Serra, R.: Automatic design of Boolean networks for cell differentiation. In: Rossi, F., Piotto, S., Concilio, S. (eds.) WIVACE 2016. CCIS, vol. 708, pp. 91–102. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57711-1_8

    Chapter  Google Scholar 

  20. Liu, M., Bassler, K.E.: Emergent criticality from coevolution in random Boolean networks. Phys. Rev. E 74(4), 041910 (2006)

    Article  Google Scholar 

  21. Magrì, S., Villani, M., Roli, A., Serra, R.: Evolving critical Boolean networks. In: Cagnoni, S., Mordonini, M., Pecori, R., Roli, A., Villani, M. (eds.) WIVACE 2018. CCIS, vol. 900, pp. 17–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21733-4_2

    Chapter  Google Scholar 

  22. Villani, M., Magrì, S., Roli, A., & Serra, R.: Selecting for positive responses to knock outs in Boolean networks. In: Cicirelli, F., Guerrieri, A., Pizzuti, C., Socievole, A., Spezzano, G., Vinci, A. (eds.) Italian Workshop on Artificial Life and Evolutionary Computation, pp. 7–16. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-45016-8_2

  23. Derrida, B., Pomeau, Y.: Random networks of automata: a simple annealed approximation. EPL (Europhys. Lett.) 1(2), 45 (1986)

    Article  Google Scholar 

  24. Langton, C.G.: Computation at the edge of chaos: phase transitions and emergent computation. Physica D 42(1–3), 12–37 (1990)

    Article  MathSciNet  Google Scholar 

  25. Bailly, F., Longo, G.: Extended critical situations: the physical singularity of life phenomena. J. Biol. Syst. 16(02), 309–336 (2008)

    Article  MATH  Google Scholar 

  26. Derrida, B., Flyvbjerg, H.: The random map model: a disordered model with deterministic dynamics. J. de Physique 48(6), 971–978 (1987)

    Article  MathSciNet  Google Scholar 

  27. Bastolla, U., Parisi, G.: The modular structure of Kauffman networks. Physica D 115(3–4), 219–233 (1998)

    Article  MATH  Google Scholar 

  28. Bastolla, U., Parisi, G.: Relevant elements, magnetization and dynamical properties in Kauffman networks: a numerical study. Physica D 115(3–4), 203–218 (1998)

    Article  MATH  Google Scholar 

  29. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press (1992)

    Google Scholar 

  30. Roli, A., Benedettini, S., Birattari, M., Pinciroli, C., Serra, R., Villani, M.: Robustness, evolvability and complexity in Boolean network robots. In: Proceedings of the ECCS2011, Vienna, Austria, pp. 12–16 (2011)

    Google Scholar 

  31. Roli, A., Villani, M., Serra, R., Benedettini, S., Pinciroli, C., Birattari, M.: Dynamical properties of artificially evolved Boolean network robots. In: Gavanelli, M., Lamma, E., Riguzzi, F. (eds.) AI*IA 2015. LNCS (LNAI), vol. 9336, pp. 45–57. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24309-2_4

    Chapter  Google Scholar 

  32. Torres-Sosa, C., Huang, S., Aldana, M.: Criticality is an emergent property of genetic networks that exhibit evolvability. PLoS Comput. Biol. 8(9) (2012)

    Google Scholar 

  33. Lynch, M., Conery, J.S.: The evolutionary fate and consequences of duplicate genes. Science 290(5494), 1151–1155 (2000)

    Google Scholar 

  34. Lynch, M.: Gene duplication and evolution. Science 297(5583), 945–947 (2002)

    Article  Google Scholar 

  35. Zhang, J.: Evolution by gene duplication: an update. Trends Ecol. Evol. 18(6), 292–298 (2003)

    Article  Google Scholar 

  36. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. (CSUR) 35(3), 268–308 (2003)

    Article  Google Scholar 

  37. Harris, S.E., Sawhill, B.K., Wuensche, A., Kauffman, S.: A model of transcriptional regulatory networks based on biases in the observed regulation rules. Complexity 7(4), 23–40 (2002)

    Article  Google Scholar 

  38. Just, W., Shmulevich, I., Konvalina, J.: The number and probability of canalizing functions. Physica D 197(3–4), 211–221 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Karlsson, F., Hörnquist, M.: Order or chaos in Boolean gene networks depends on the mean fraction of canalizing functions. Physica A 384(2), 747–757 (2007)

    Article  Google Scholar 

Download references

Funding

This research was funded by UniversitĂ  degli Studi di Modena e Reggio Emilia (FAR2019 project of the Department of Physics, Informatics and Mathematics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Villani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cappelletti, G., D’Addese, G., Serra, R., Villani, M. (2022). Dynamical Criticality in Growing Networks. In: Schneider, J.J., Weyland, M.S., Flumini, D., Füchslin, R.M. (eds) Artificial Life and Evolutionary Computation. WIVACE 2021. Communications in Computer and Information Science, vol 1722. Springer, Cham. https://doi.org/10.1007/978-3-031-23929-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23929-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23928-1

  • Online ISBN: 978-3-031-23929-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics