Skip to main content

A Hybrid Control System Architecture for a Mobile Robot to Provide an Energy-Efficient and Fast Data Processing

  • Conference paper
  • First Online:
Artificial Life and Evolutionary Computation (WIVACE 2021)

Abstract

The research is aimed to improve a controller for spherical mobile robots. The main issues of the existing controller are related to the computational capabilities of a low-power digital controller and the slow handling of sensor data. A survey of suitable contemporary technologies and approaches to spherical robot control was done. A hybrid analogue-digital architecture is considered the best way to control the robot. It is concluded, that exactly hybrid controller, which combines specialised analogue accelerators with multi-purpose digital controllers can be the most power-efficient, compact and fast architecture for bio-inspired robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ylikorpi, T, Suomela, J.: Ball-shaped robots: a historical overview and recent developments at TKK. In: International Conference on Field and Service Robotics. Port Douglas, Australia, p. 6 (2005)

    Google Scholar 

  2. Ulmann, B.: Analog Computing. Oldenbourg Wissenschaftsverlag, München (2013)

    Book  MATH  Google Scholar 

  3. Köppel, S., Ulmann, B., Heimann, L., Killat, D.:Using analog computers in today‘s largest computational challenges. arXiv:2102.07268v2 [physics.comp-ph]

  4. Tietze, U., Schenk, C., Gamm, E.: Electronic Circuits: Handbook for Design and Application. 2nd edn. Springer-Verlag Berlin Heidelberg, New York (2008).https://doi.org/10.1007/978-3-540-78655-9

  5. Cuong, N.D., Van Lanh, N., Van Huyen, D.: Design of LQG controller using operational amplifiers for motion control systems. J. Automation and Control Eng. 3(2), 157-163 (2015)

    Google Scholar 

  6. Chen, B., Yang, H., Song, B., Meng, D., et al.: A memristor-based hybrid analog-digital computing platform for mobile robotics. Sci. Robot. 5(47), 1–7 (2020)

    Article  Google Scholar 

  7. Still, S., Tilden, M.: Controller for a four-legged walking machine. Neuromorphic Systems 138–148 (1998)

    Google Scholar 

  8. Hasslacher, B., Tilden, M.W.: Living machines. Robotics Auton. Syst. 15(1-2), 143-169 (1995)

    Google Scholar 

  9. Hasler, J.: Analog abstraction, computation, and numerical analysis. In: 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, pp. 1–5 (2018)

    Google Scholar 

  10. Lu, J., Young, S., Arel, I., Holleman, J.: A 1 TOPS/W analog deep machine-learning engine with floating-gate storage in 0.13 um CMOS. IEEE J. Solid-State Circuits 50, 270–281 (2015)

    Google Scholar 

  11. Chua, L.O., Sirakoulis, G.C., Adamatzky, A.: Handbook of Memristor Networks. Springer (2019). https://doi.org/10.1007/978-3-319-76375-0

  12. Braitenberg, V.: Vehicles, Experiments in Synthetic Psychology. MIT Press, Cambridge, Mass (1984)

    Google Scholar 

  13. Moon, F.: Chaotic Vibrations. John Wiley&Son (2004)

    Google Scholar 

  14. Sooraska, P., Klomkarn, P.: “No-CPU” chaotic robots: from classroom to commerce. Circuits and Systems Magazine, IEEE 10, 46–53 (2010)

    Article  Google Scholar 

  15. Baird, B., Hirsch, M.W., Eeckman, F.: A neural network associative memory for handwritten character recognition using multiple Chua characters. IEEE Trans. Circuits Syst. II: Analog and Digital Signal Processing 40, 667–674 (1993)

    Google Scholar 

  16. Jankowski, S., Londei, A., Mazur, C., Lozowski, A.: Synchronization and association in a large network of coupled Chua’s circuits. Int. J. of Electronics 79, 823–828 (1995)

    Article  Google Scholar 

  17. Nakajima, K., Fischer, I.: Reservoir computing. Theory, Physical Implementations, and Applications. Springer (2021). https://doi.org/10.1007/978-981-13-1687-6

  18. Tanaka, G., Yamane, T., Heroux, J.B., Nakane, R., et al.: Recent advances in physical reservoir computing: a review. Neural Netw. 115, 100–123 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

This work has been supported by the grant BRFFI-RFFI No. F18R-229.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uladzislau Sychou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sychou, U., Prakapovich, R., Kapustjan, S., Shabanov, V. (2022). A Hybrid Control System Architecture for a Mobile Robot to Provide an Energy-Efficient and Fast Data Processing. In: Schneider, J.J., Weyland, M.S., Flumini, D., Füchslin, R.M. (eds) Artificial Life and Evolutionary Computation. WIVACE 2021. Communications in Computer and Information Science, vol 1722. Springer, Cham. https://doi.org/10.1007/978-3-031-23929-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23929-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23928-1

  • Online ISBN: 978-3-031-23929-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics