Skip to main content

Effective Resistance Based Weight Thresholding for Community Detection

  • Conference paper
  • First Online:
Artificial Life and Evolutionary Computation (WIVACE 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1722))

Included in the following conference series:

  • 224 Accesses

Abstract

Weight thresholding is often used as a sparsification procedure when graphs are too dense and reducing the number of edges is necessary to apply standard graph-theoretical methods. This work presents a proof-of-principle of a new evolutionary method based on Genetic Algorithms detecting communities in weighted networks by exploiting the concepts of effective resistance and weight thresholding. Given an input weighted graph, the algorithm considers its equivalent electric network where the edge weights are recomputed taking also into account the effective resistance, whose square root has shown to be a Euclidean metric. The method then generates a weighted sparse graph by maintaining for each node only the neighbors having weights below a given distance threshold. In such a way, only the neighbor nodes with low effective resistances and thus, highly similar according to this metric, are considered. Experiments on synthetically generated networks show that our approach is effective when compared to other benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Avrachenkov, K., Chebotarev, P., Rubanov, D.: Kernels on graphs as proximity measures. In: Bonato, A., Chung Graham, F., Prałat, P. (eds.) WAW 2017. LNCS, vol. 10519, pp. 27–41. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67810-8_3

    Chapter  Google Scholar 

  2. Aynulin, R.: Impact of network topology on efficiency of proximity measures for community detection. In: Cherifi, H., Gaito, S., Mendes, J.F., Moro, E., Rocha, L.M. (eds.) COMPLEX NETWORKS 2019. SCI, vol. 881, pp. 188–197. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36687-2_16

    Chapter  Google Scholar 

  3. Barrat, A., Barthelemy, M., Pastor-Satorras, R., Vespignan, A.: The architecture of complex weighted networks. Proc. Nat. Acad. Sci., 101, 3747 (2004)

    Google Scholar 

  4. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008 (2008)

    Article  MATH  Google Scholar 

  5. Chandra, A.K., Raghavan, P., Ruzzo, W.L., Smolensky, R., Tiwari, P.: The electrical resistance of a graph captures its commute and cover times. Comput. Complex. 6(4), 312–340 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deza, M.M., Deza, E.: Encyclopedia of distances. In: Encyclopedia of Distances, pp. 1–583. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00234-2_1

  7. Dijkstra, E.W., et al.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  8. Doyle, P., Snell, J.: Random walks and electric networks. Mathematical Association of America, Washington, D.C. (1989)

    Google Scholar 

  9. Fortunato, S., Hric, D.: Community detection in networks: a user guide. Phys. Rep. 659, 1–44 (2016)

    Article  MathSciNet  Google Scholar 

  10. Ghosh, A., Boyd, S., Saberi, A.: Minimizing effective resistance of a graph. SIAM Rev. 50(1), 37–66 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning (1989)

    Google Scholar 

  13. Klein, D.J., Randić, M.: Resistance distance. J. Math. Chem. 12(1), 81–95 (1993)

    Article  MathSciNet  Google Scholar 

  14. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4), 046110 (2008)

    Article  Google Scholar 

  15. Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Park, Y., Song, M.: A genetic algorithm for clustering problems. In: Proceedings of the Third Annual Conference on Genetic Programming, vol. 1998, pp. 568–575 (1998)

    Google Scholar 

  17. Pizzuti, C.: Evolutionary computation for community detection in networks: a review. IEEE Trans. Evol. Comput. 22(3), 464–483 (2018)

    Article  Google Scholar 

  18. Radicchi, F., Ramasco, J.J., Fortunato, S.: Information filtering in complex weighted networks. Phys. Rev. E E83, 046101 (2011)

    Article  Google Scholar 

  19. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. 105(4), 1118–1123 (2008)

    Article  Google Scholar 

  20. Saerens, M., Fouss, F., Yen, L., Dupont, P.: The principal components analysis of a graph, and its relationships to spectral clustering. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 371–383. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30115-8_35

    Chapter  Google Scholar 

  21. Sommer, F., Fouss, F., Saerens, M.: Comparison of graph node distances on clustering tasks. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9886, pp. 192–201. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44778-0_23

    Chapter  Google Scholar 

  22. Spielman, D.A., Srivastava, N.: Graph sparsification by effective resistances. Siam J. Comput. (40), 1913 (1996)

    Google Scholar 

  23. Tumminello, M., Aste, T., Matteo, T.D., Mantegna, R.N.: A tool for filtering information in complex systems. Proc. Nat. Acad. Sci. 102, 10421 (2005)

    Google Scholar 

  24. Van Mieghem, P.: Graph Spectra for Complex Networks. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  25. Van Mieghem, P., Devriendt, K., Cetinay, H.: Pseudoinverse of the Laplacian and best spreader node in a network. Phys. Rev. E 96(3), 032311 (2017)

    Article  MathSciNet  Google Scholar 

  26. Yan, X., Jeub, L.G.S., Flammini, A., Radicchi, F., Fortunato, S.: Weight thresholding on complex networks. Phys. Rev. E E98, 042304 (2018)

    Article  Google Scholar 

  27. Yen, L., Fouss, F., Decaestecker, C., Francq, P., Saerens, M.: Graph nodes clustering based on the commute-time kernel. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426, pp. 1037–1045. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71701-0_117

    Chapter  Google Scholar 

  28. Yen, L., Fouss, F., Decaestecker, C., Francq, P., Saerens, M.: Graph nodes clustering with the sigmoid commute-time kernel: a comparative study. Data Knowl. Eng. 68(3), 338–361 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa Socievole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pizzuti, C., Socievole, A. (2022). Effective Resistance Based Weight Thresholding for Community Detection. In: Schneider, J.J., Weyland, M.S., Flumini, D., Füchslin, R.M. (eds) Artificial Life and Evolutionary Computation. WIVACE 2021. Communications in Computer and Information Science, vol 1722. Springer, Cham. https://doi.org/10.1007/978-3-031-23929-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23929-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23928-1

  • Online ISBN: 978-3-031-23929-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics