Abstract
Weight thresholding is often used as a sparsification procedure when graphs are too dense and reducing the number of edges is necessary to apply standard graph-theoretical methods. This work presents a proof-of-principle of a new evolutionary method based on Genetic Algorithms detecting communities in weighted networks by exploiting the concepts of effective resistance and weight thresholding. Given an input weighted graph, the algorithm considers its equivalent electric network where the edge weights are recomputed taking also into account the effective resistance, whose square root has shown to be a Euclidean metric. The method then generates a weighted sparse graph by maintaining for each node only the neighbors having weights below a given distance threshold. In such a way, only the neighbor nodes with low effective resistances and thus, highly similar according to this metric, are considered. Experiments on synthetically generated networks show that our approach is effective when compared to other benchmarks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Avrachenkov, K., Chebotarev, P., Rubanov, D.: Kernels on graphs as proximity measures. In: Bonato, A., Chung Graham, F., Prałat, P. (eds.) WAW 2017. LNCS, vol. 10519, pp. 27–41. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67810-8_3
Aynulin, R.: Impact of network topology on efficiency of proximity measures for community detection. In: Cherifi, H., Gaito, S., Mendes, J.F., Moro, E., Rocha, L.M. (eds.) COMPLEX NETWORKS 2019. SCI, vol. 881, pp. 188–197. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36687-2_16
Barrat, A., Barthelemy, M., Pastor-Satorras, R., Vespignan, A.: The architecture of complex weighted networks. Proc. Nat. Acad. Sci., 101, 3747 (2004)
Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008 (2008)
Chandra, A.K., Raghavan, P., Ruzzo, W.L., Smolensky, R., Tiwari, P.: The electrical resistance of a graph captures its commute and cover times. Comput. Complex. 6(4), 312–340 (1996)
Deza, M.M., Deza, E.: Encyclopedia of distances. In: Encyclopedia of Distances, pp. 1–583. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00234-2_1
Dijkstra, E.W., et al.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)
Doyle, P., Snell, J.: Random walks and electric networks. Mathematical Association of America, Washington, D.C. (1989)
Fortunato, S., Hric, D.: Community detection in networks: a user guide. Phys. Rep. 659, 1–44 (2016)
Ghosh, A., Boyd, S., Saberi, A.: Minimizing effective resistance of a graph. SIAM Rev. 50(1), 37–66 (2008)
Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning (1989)
Klein, D.J., Randić, M.: Resistance distance. J. Math. Chem. 12(1), 81–95 (1993)
Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4), 046110 (2008)
Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)
Park, Y., Song, M.: A genetic algorithm for clustering problems. In: Proceedings of the Third Annual Conference on Genetic Programming, vol. 1998, pp. 568–575 (1998)
Pizzuti, C.: Evolutionary computation for community detection in networks: a review. IEEE Trans. Evol. Comput. 22(3), 464–483 (2018)
Radicchi, F., Ramasco, J.J., Fortunato, S.: Information filtering in complex weighted networks. Phys. Rev. E E83, 046101 (2011)
Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. 105(4), 1118–1123 (2008)
Saerens, M., Fouss, F., Yen, L., Dupont, P.: The principal components analysis of a graph, and its relationships to spectral clustering. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 371–383. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30115-8_35
Sommer, F., Fouss, F., Saerens, M.: Comparison of graph node distances on clustering tasks. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9886, pp. 192–201. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44778-0_23
Spielman, D.A., Srivastava, N.: Graph sparsification by effective resistances. Siam J. Comput. (40), 1913 (1996)
Tumminello, M., Aste, T., Matteo, T.D., Mantegna, R.N.: A tool for filtering information in complex systems. Proc. Nat. Acad. Sci. 102, 10421 (2005)
Van Mieghem, P.: Graph Spectra for Complex Networks. Cambridge University Press, Cambridge (2010)
Van Mieghem, P., Devriendt, K., Cetinay, H.: Pseudoinverse of the Laplacian and best spreader node in a network. Phys. Rev. E 96(3), 032311 (2017)
Yan, X., Jeub, L.G.S., Flammini, A., Radicchi, F., Fortunato, S.: Weight thresholding on complex networks. Phys. Rev. E E98, 042304 (2018)
Yen, L., Fouss, F., Decaestecker, C., Francq, P., Saerens, M.: Graph nodes clustering based on the commute-time kernel. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426, pp. 1037–1045. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71701-0_117
Yen, L., Fouss, F., Decaestecker, C., Francq, P., Saerens, M.: Graph nodes clustering with the sigmoid commute-time kernel: a comparative study. Data Knowl. Eng. 68(3), 338–361 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Pizzuti, C., Socievole, A. (2022). Effective Resistance Based Weight Thresholding for Community Detection. In: Schneider, J.J., Weyland, M.S., Flumini, D., Füchslin, R.M. (eds) Artificial Life and Evolutionary Computation. WIVACE 2021. Communications in Computer and Information Science, vol 1722. Springer, Cham. https://doi.org/10.1007/978-3-031-23929-8_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-23929-8_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-23928-1
Online ISBN: 978-3-031-23929-8
eBook Packages: Computer ScienceComputer Science (R0)