Skip to main content

GeoSoft: A Language for Soft Querying Features Within GeoJSON Information Layers

  • Conference paper
  • First Online:
Web Information Systems and Technologies (WEBIST 2020, WEBIST 2021)

Abstract

GeoJSON has become one of the most popular format for representing spatial information. Its popularity is due to the fact that it relies on JSON as hosting syntactic structure. Currently, querying in an effective way a GeoJSON document, to extract features of interests, can be hard, for various reasons.

In this paper, we propose a domain-specific language named GeoSoft: it is a high-level tool that hides details of the GeoJSON format, which enables soft querying of features, to express imprecise queries. The paper shows that a GeoSoft query can be effectively and automatically translated into a J-CO-QL script, which is executed by the J-CO Framework, i.e., the execution engine we chose for GeoSoft.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://geojson.org/, accessed on 30/10/2021.

  2. 2.

    https://ec.europa.eu/eurostat/web/nuts/background, accessed on 30/10/2021.

  3. 3.

    MongoDB. 2021. Available online: https://www.mongodb.com/ accessed on 30/10/2021.

  4. 4.

    CouchDb. 2021. Available online: https://couchdb.apache.org/ accessed on 30/10/2021.

  5. 5.

    https://www.esri.com/arcgis-blog/products/arcgis-hub/announcements/welcome-to-the-content-library/ accessed on 30/10/2021.

  6. 6.

    https://leafletjs.com/examples/geojson/, accessed on 30/10/2021.

  7. 7.

    https://carto.com/developers/carto-vl/guides/add-data-sources/, accessed on 30/10/2021.

  8. 8.

    https://turfjs.org/, accessed on 30/10/2021.

  9. 9.

    https://www.statsilk.com/maps/convert-esri-shapefile-map-geojson-format, accessed on 30/10/2021.

  10. 10.

    https://www.geopackage.org/guidance/modeling.html, accessed on 30/10/2021.

  11. 11.

    https://ec.europa.eu/eurostat, accessed on 30/10/2021.

  12. 12.

    https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/nuts, accessed on 30/10/2021. We opted for the 1:3Million scale since the GeoJSON layer at 1:1Million scale was too big to be stored into a MongoDB database.

  13. 13.

    https://ec.europa.eu/eurostat/databrowser/view/nama_10r_3popgdp/default/table, accessed on 30/10/2021.

  14. 14.

    https://ec.europa.eu/eurostat/databrowser/view/NAMA_10_GDP$DEFAULTVIEW/default/ table, accessed on 30/10/2021.

  15. 15.

    for this purpose we used: https://www.convertcsv.com/csv-to-json.htm, accessed on 30/10/2021.

  16. 16.

    https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form, accessed on 30/10/2021.

  17. 17.

    https://www.antlr.org/, accessed on 30/10/2021.

References

  1. Aufaure, M.A., Trépied, C.: A survey of query languages for geographic information systems, p. 3 (1996)

    Google Scholar 

  2. Bieber, M., Kacmar, C.: Designing hypertext support for computational applications. Commun. ACM 38(8), 99–107 (1995)

    Article  Google Scholar 

  3. Bordogna, G., Capelli, S., Ciriello, D.E., Psaila, G.: A cross-analysis framework for multi-source volunteered, crowdsourced, and authoritative geographic information: the case study of volunteered personal traces analysis against transport network data. Geo-Spat. Inf. Sci. 21(3), 257–271 (2018)

    Article  Google Scholar 

  4. Bordogna, G., Capelli, S., Psaila, G.: A big geo data query framework to correlate open data with social network geotagged posts. In: Bregt, A., Sarjakoski, T., van Lammeren, R., Rip, F. (eds.) GIScience 2017. LNGC, pp. 185–203. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56759-4_11

    Chapter  Google Scholar 

  5. Bordogna, G., Psaila, G.: Soft aggregation in flexible databases querying based on the vector p-norm. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 17(supp01), 25–40 (2009)

    Article  MATH  Google Scholar 

  6. Bordogna, G., Psaila, G.: Customizable flexible querying in classical relational databases. In: Handbook of Research on Fuzzy Information Processing in Databases, pp. 191–217. IGI Global (2008)

    Google Scholar 

  7. Bosc, P., Pivert, O.: SQLf: a relational database language for fuzzy querying. IEEE Trans. Fuzzy Syst. 3(1), 1–17 (1995)

    Article  Google Scholar 

  8. Garcia Bringas, P., Pastor, I., Psaila, G.: Can blockchain technology provide information systems with trusted database? The case of hyperledger fabric. In: Cuzzocrea, A., Greco, S., Larsen, H.L., Saccà, D., Andreasen, T., Christiansen, H. (eds.) FQAS 2019. LNCS (LNAI), vol. 11529, pp. 265–277. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27629-4_25

    Chapter  Google Scholar 

  9. Butler, H., et al.: The GeoJSON format. Internet Engineering Task Force (IETF) (2016)

    Google Scholar 

  10. Cai, G.: GeoVSM: an integrated retrieval model for geographic information. In: Egenhofer, M.J., Mark, D.M. (eds.) GIScience 2002. LNCS, vol. 2478, pp. 65–79. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45799-2_5

    Chapter  MATH  Google Scholar 

  11. Cattell, R.: Scalable SQL and NoSQL data stores. ACM SIGMOD Rec. 39(4), 12–27 (2011)

    Article  Google Scholar 

  12. Costagliola, G., Tortora, G., Tucci, M., Busillo, M.: GISQL—a query language intepreter for geographical information systems. In: Spaccapietra, S., Jain, R. (eds.) Visual Database Systems 3. ITIFIP, pp. 275–286. Springer, Boston, MA (1995). https://doi.org/10.1007/978-0-387-34905-3_17

    Chapter  Google Scholar 

  13. Egenhofer, M.J.: Spatial SQL: a query and presentation language. IEEE Trans. Knowl. Data Eng. 6(1), 86–95 (1994)

    Article  Google Scholar 

  14. Florescu, D., Fourny, G.: JSONiq: the history of a query language. IEEE Internet Comput. 17(5), 86–90 (2013)

    Article  Google Scholar 

  15. Formica, A., Mazzei, M., Pourabbas, E., Rafanelli, M.: Querying distributed GIS with GeoPQLJ based on GeoJSON, pp. 175–182 (2019)

    Google Scholar 

  16. Fosci, P., Marrara, S., Psaila, G.: Soft querying GeoJSON documents within the J-CO framework. In: 16th International Conference on Web Information Systems and Technologies (WEBIST 2020), pp. 253–265. SCITEPRESS-Science and Technology Publications, Lda. (2020)

    Google Scholar 

  17. Fosci, P., Psaila, G.: J-CO, a framework for fuzzy querying collections of JSON documents (demo). In: Andreasen, T., De Tré, G., Kacprzyk, J., Legind Larsen, H., Bordogna, G., Zadrożny, S. (eds.) FQAS 2021. LNCS (LNAI), vol. 12871, pp. 142–153. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86967-0_11

    Chapter  Google Scholar 

  18. Fosci, P., Psaila, G.: Powering soft querying in J-CO-QL with JavaScript functions. In: Sanjurjo González, H., Pastor López, I., García Bringas, P., Quintián, H., Corchado, E. (eds.) SOCO 2021. AISC, vol. 1401, pp. 207–221. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-87869-6_20

    Chapter  Google Scholar 

  19. Fosci, P., Psaila, G.: Towards flexible retrieval, integration and analysis of JSON data sets through fuzzy sets: a case study. Information 12(7), 258 (2021)

    Article  Google Scholar 

  20. Galindo, J., Urrutia, A., Piattini, M.: Fuzzy Databases: Modeling, Design, and Implementation. IGI Global (2006)

    Google Scholar 

  21. Anderson, J.C., Lehnardt, J., Slater, N.: CouchDB: The Definitive Guide. O’Reilly Media, Inc. (2010)

    Google Scholar 

  22. Jacobs, B.E., Walczak, C.A.: A generalized query-by-example data manipulation language based on database logic. IEEE Trans. Softw. Eng. 1, 40–57 (1983)

    Article  Google Scholar 

  23. Kim, H.J., Korth, H.F., Silberschatz, A.: Picasso: a graphical query language. Softw. Pract. Exp. 18(3), 169–203 (1988)

    Article  Google Scholar 

  24. Mayer, B.: Beyond icons: towards new metaphors for visual query languages for spatial information systems. In: Cooper, R. (ed.) IDS 1992. Workshops in Computing, pp. 113–135. Springer, Glasgow (1992). https://doi.org/10.1007/978-1-4471-3423-7_8

    Chapter  Google Scholar 

  25. Nayak, A., Poriya, A., Poojary, D.: Type of NoSQL databases and its comparison with relational databases. Int. J. Appl. Inf. Syst. 5(4), 16–19 (2013)

    Google Scholar 

  26. Ong, K.W., Papakonstantinou, Y., Vernoux, R.: The SQL++ unifying semi-structured query language, and an expressiveness benchmark of SQL-on-Hadoop, NoSQL and NewSQL databases. CoRR, abs/1405.3631 (2014)

    Google Scholar 

  27. Psaila, G., Fosci, P.: Toward an anayist-oriented polystore framework for processing json geo-data. In: International Conferences on Applied Computing 2018, Budapest, Hungary, 21–23 October 2018, pp. 213–222. IADIS (2018)

    Google Scholar 

  28. Psaila, G., Fosci, P.: J-CO: a platform-independent framework for managing geo-referenced JSON data sets. Electronics 10(5), 621 (2021)

    Article  Google Scholar 

  29. Psaila, G., Marrara, S.: A first step towards a fuzzy framework for analyzing collections of JSON documents. In: IADIS AC 2019, pp. 19–28 (2019)

    Google Scholar 

  30. Staes, F., Tarantino, L., Tiems, A.: A graphical query language for object oriented databases. In: Proceedings 1991 IEEE Workshop on Visual Languages, pp. 205–210 (1991)

    Google Scholar 

  31. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 8(3), 199–249 (1975)

    Article  MATH  Google Scholar 

Download references

Acknowledgment

We warmly thank Luca Assolari, student of the Master Degree in Computer Science at University of Bergamo (Italy), who implemented the prototype GeoSoft interpreter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Psaila .

Editor information

Editors and Affiliations

A Syntax of GeoSoft

A Syntax of GeoSoft

In Fig. 7, we present the syntax (grammar) of the GeoSoft language introduced in Sect. 5. The grammar is formulated in EBNFFootnote 16 notation according to the convention applied by ANTLR (ANother Tool for Language Recognition)Footnote 17. ANTLR is a widely-known parser generator that denotes non-terminal elements (rules) in lower case, while terminal elements (tokens) are in upper case or directly declared between quotes. The geoSoft rule is the starting rule of the grammar.

Fig. 7.
figure 7

GeoSoft grammar.

For the sake of simplicity, we do not include the definitions of the condition, expression and number rules, but their meaning is denoted by their names. The ID and DOT_ID tokens denote the classic identifiers, respectively, not having (ID) or having (DOT_ID) a dot character as starting character.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fosci, P., Marrara, S., Psaila, G. (2023). GeoSoft: A Language for Soft Querying Features Within GeoJSON Information Layers. In: Marchiori, M., Domínguez Mayo, F.J., Filipe, J. (eds) Web Information Systems and Technologies. WEBIST WEBIST 2020 2021. Lecture Notes in Business Information Processing, vol 469. Springer, Cham. https://doi.org/10.1007/978-3-031-24197-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24197-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24196-3

  • Online ISBN: 978-3-031-24197-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics