Skip to main content

Designing a Multi-agent Control System for a Reconfigurable Manufacturing System

  • Conference paper
  • First Online:
Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future (SOHOMA 2022)

Abstract

This paper introduces a multi-agent control system for a reconfigurable manufacturing system designed to provide, in the context of Industry 4.0, test-before-invest services by the FIT EDIH. The product assembled is flexible, with multiple possible assembly sequences. The manufacturing system is composed of multiple interchangeable manufacturing cells that allow any layout configuration with autonomous transporter units that move intermediate products from one cell to another. The reference architecture used to instantiate the developed prototype and its multi-agent control system with the required agents, concept and predicate ontology are subsequently presented. The hardware and software implementation are also detailed. The multi-agent system is implemented using SPADE framework. Each manufacturing cell is controlled using 4diac framework while transporters use Robot Operating System. Manufacturing orders are placed by a client using a web interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Renda, A.. et al.: Industry 5.0, a Transformative Vision for Europe: Governing Systemic Transformations towards a Sustainable Industry, European Commission. Directorate-General for Research and Innovation (2022). https://doi.org/10.2777/17322

  2. European Digital Innovation Hubs | Shaping Europe’s digital future, https://digital-strategy.ec.europa.eu/en/activities/edihs, Accessed July 2022

  3. Miqueo, A., Torralba, M., Yagüe-Fabra, J.A.: Lean manual assembly 4.0: a systematic review. Appl. Sci. 10, 8555 (2020). https://doi.org/10.3390/app10238555

  4. Arden, W.: The EV disruption (2019). https://www.fia.org/marketvoice/articles/ev-disruption, Accessed July 2022

  5. Starr, M.K.: Modular production - A new concept. Harv. Bus. Rev. 43(6), 131–142 (1965)

    Google Scholar 

  6. Starr, M.K.: Modular production – a 45-year-old concept. Int. J. Oper. Prod. Manag. 30(1), 7–19 (2010). https://doi.org/10.1108/01443571011012352

    Article  Google Scholar 

  7. Sabioni, R.C., Daaboul, J., Le Duigou, J.: Optimization of reconfigurable manufacturing systems configuration: a literature review. In: Roucoules, L., Paredes, M., Eynard, B., Morer, P., Rizzi, C. (eds.) JCM 2020. LNME, pp. 426–435. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-70566-4_67

  8. Sabioni, R.C., Daaboul, J., Le Duigou, J.: Concurrent optimisation of modular product and Reconfigurable Manufacturing System configuration: a customer-oriented offer for mass customisation. Int. J. Prod. Res. 60(7), 2275–2291 (2022). https://doi.org/10.1080/00207543.2021.1886369

    Article  Google Scholar 

  9. Doran, D., Hill, A.: A review of modular strategies and architecture within manufacturing operations. Proc.  Institute. Mech. Eng. Part D: J. Automobile Eng. 223(1),  65–75 (2009). https://doi.org/10.1243/09544070JAUTO822

  10. Kim, D.-Y., et al.: A modular factory testbed for the rapid reconfiguration of manufacturing systems. J. Intell. Manuf. 31(3), 661–680 (2019). https://doi.org/10.1007/s10845-019-01471-2

    Article  Google Scholar 

  11. Kovalenko, I., Saez, M., Barton, K., Tilbury, D.: SMART: A system-level manufacturing and automation research testbed. Smart Sustain. Manufact. Syst. 1(1), 232–261 (2017). https://doi.org/10.1520/SSMS20170006

    Article  Google Scholar 

  12. Gorecky, D., Weyer, S., Hennecke, A., Zühlke, D.: Design and instantiation of a modular system architecture for smart factories. IFAC-PapersOnLine 49(31), 79–84 (2016). https://doi.org/10.1016/j.ifacol.2016.12.165

    Article  Google Scholar 

  13. First skill-based application in operation in Kaiserslautern. https://smartfactory.de/en/first-skill-based-application-in-operation-in-kaiserslautern/, Accessed July 2022

  14. BOSCH. How future production looks like – The Modular Production System. https://www.boschmanufacturingsolutions.com/news-and-highlights/modular-production-system/, Accessed July 2022

  15. ScalABLE4.0. https://www.inesctec.pt/en/projects/scalable4-0, Accessed July 2022

  16. EID Robotics. Building an Automated Assembly Line. https://eidrobotics.com/building-an-automated-assembly-line-how-to-minimize-costs-and-ramp-up-time/, Accessed: July 2022

  17. Huawei. Introducing Huawei Industry 4.0 Test Bed. https://e.huawei.com/en/material/local/ccb33d2eeab84e68a70938335d1a6e83, Accessed July 2022

  18. Testbed Prague. https://ricaip.eu/testbed-prague/, Accessed July 2022

  19. Watson, L.: Use a testbed to enable Industry 4.0 manufacturing. Manufacturing AUTOMATION (2021). https://www.automationmag.com/use-a-testbed-to-enable-industry-4-0-manufacturing/, Accessed May 2021

  20. Industry 4.0 Testlab. https://techlab.uts.edu.au/lab/industry-4-0-testlab/, Accessed July 2022

  21. Smart Factory Romania. https://smartfactoryromania.ro/en/, Accessed June 2022

  22. Ghetiu, T., Pirvu, B.: Insights into SoRa: a reference architecture for cyber-physical social systems in the industry 4.0 Era. In: Proceedings of the International Conference on Innovative Intelligent Industrial Production and Logistics - IN4PL, ISBN 978–989–758–476–3, pp. 47–52 (2020). doi: https://doi.org/10.5220/0009982300470052

  23. Gusmeroli, S., et al.: OSMOSE: a paradigm for the liquid-sensing enterprise. In: IWEI Workshops (2015)

    Google Scholar 

  24. Bauer, M., et al.: Internet of Things – Architecture IoT-A Deliverable D1.5 – Final architectural reference model for the IoT v3.0. IoT-A (257521) (2013)

    Google Scholar 

  25. Isaja, M., Fischer, K., Rotondi, D., Coscia, E., Rooker, M.: D2.2 - BEinCPPS Architecture & Business Processes, Ref. Ares(2017)3817966 - 30/07/2017 (2017)

    Google Scholar 

  26. Matei, A., Ţocu, N.-A., Zamfirescu, C.-B., Gellert, A., Neghină, M.: Engineering a digital twin for manual assembling. In: Margaria, T., Steffen, B. (eds.) ISoLA. LNCS, vol. 12479, pp. 140–152. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-83723-5_10

  27. Gellert, A., Sorostinean, R., Pirvu, B.C.: Robust assembly assistance using informed tree search with Markov chains. Sensors. 22(2), 495 (2022). https://doi.org/10.3390/s22020495

    Article  Google Scholar 

  28. Gellert, A., Sarbu, D., Precup, S.A., Matei, A., Circa, D., Zamfirescu, C.B.: Estimation of missing LiDAR data for accurate AGV localization. IEEE Access 10, 68416–68428 (2022). https://doi.org/10.1109/ACCESS.2022.3185763

    Article  Google Scholar 

  29. IEEE Standards Committee: IEEE Recommended Practice for Industrial Agents: Integration of Software Agents and Low-Level Automation Functions. IEEE Std 2660(1–2020), 1–43 (2021). https://doi.org/10.1109/IEEESTD.2021.9340089

  30. Palanca, J., Terrasa, A., Julian, V., Carrascosa, C.: SPADE 3: supporting the new generation of multi-agent systems. IEEE Access 8, 182537–182549 (2020). https://doi.org/10.1109/ACCESS.2020.3027357

    Article  Google Scholar 

  31. Palanca, J.: SPADE Documentation. https://spade-mas.readthedocs.io/en/latest/index.html, Accessed June 2022

  32. Palanca, J., Rincon, J., Julian, V., Carrascosa, C., Terrasa, A.: Developing IoT artifacts in a MAS platform. Electronics 11, 655 (2022). https://doi.org/10.3390/electronics11040655

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the DiFiCIL project (contract no. 69/08.09.2016, ID P_37_771, web: http://dificil.grants.ulbsibiu.ro), co-funded by ERDF through the Competitiveness Operational Programme 2014–2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru Matei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Matei, A., Pirvu, B.C., Petruse, R.E., Candea, C., Zamfirescu, B.C. (2023). Designing a Multi-agent Control System for a Reconfigurable Manufacturing System. In: Borangiu, T., Trentesaux, D., Leitão, P. (eds) Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future. SOHOMA 2022. Studies in Computational Intelligence, vol 1083. Springer, Cham. https://doi.org/10.1007/978-3-031-24291-5_34

Download citation

Publish with us

Policies and ethics