Skip to main content

Retrieving the Evidence of a Free Text Annotation in a Scientific Article: A Data Free Approach

  • Conference paper
  • First Online:
Computational Linguistics and Intelligent Text Processing (CICLing 2019)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13451))

  • 329 Accesses

Abstract

The exponential growth of research publications provides challenges for curators and researchers in finding and assimilating scientific facts described in the literature. Therefore, services that sup-port the browsing of articles and the identification of key concepts with minimal effort would be beneficial for the scientific community. Reference databases store such high value scientific facts and key concepts, in the form of annotations. Annotations are statements assigned by curators from an evidence in a publication. Yet, if annotated statements are linked with the publication’s references (e.g. PubMed identifiers), the evidences are rarely stored during the curation process. In this paper, we investigate the automatic relocalization of biological evidences, the Gene References Into Function (GeneRIFs), in scientific articles. GeneRIFs are free text statements extracted from an article, and potentially reformulated by a curator. De facto, only 33% of geneRIFs are copy-paste that can be retrieved by the reader with the search tool of his reader. For automatically retrieving the other evidences, we use an approximate string matching algorithm, based on a finite state automaton and a derivative Levenshtein distance. For evaluation, two hundred candidate sentences were evaluated by human experts. We present and compare results for the relocalization in both abstracts and fulltexts. With the optimal setting, 76% of the evidences are retrieved with a precision of 97%. This data free approach does not require any training data nor a priori lexical knowledge. Yet it remarkable how it handles with complex language modifications such as reformulations, acronyms expansion, or anaphora. In the whole MEDLINE, 350,000 geneRIFs were retrieved in abstracts, and 15,000 in fulltexts; they are currently available for highlighting in the Europe PMC literature browser.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Venkatesan, A., et al.: SciLite: a platform for displaying text-mined annotations as a means to link research articles with biological data. Wellcome Open Res. 1, 25 (2016). https://doi.org/10.12688/wellcomeopenres.10210.1

  2. Howe, D., et al.: Big data: the future of biocuration. Nature 455(7209), 47–50 (2008). https://doi.org/10.1038/455047a

    Article  Google Scholar 

  3. Gobeill, J., Pasche, E., Vishnyakova, D., Ruch, P.: Managing the data deluge: data-driven GO category assignment improves while complexity of functional annotation increases. Database (Oxford) (2013). https://doi.org/10.1093/database/bat041

  4. Brown, G.R., et al.: Gene: a gene-centered information resource at NCBI. Nucl. Acids Res. 43(D1), D36–D42 (2015). https://doi.org/10.1093/nar/gku1055

    Article  Google Scholar 

  5. Bultet, L.A., Aguilar-Rodriguez, J., Ahrens, C.H., Ahrne, E.L., Ai, N., et al.: The SIB Swiss Institute of Bioinformatics’ resources: focus on curated databases. Nucl. Acids Res. 44, D27–D37 (2016). https://doi.org/10.1093/nar/gkv1310

    Article  Google Scholar 

  6. Baumgartner, W.A., Cohen, K.B., Fox, L.M., Acquaah-Mensah, G., Hunter, L.: Manual curation is not sufficient for annotation of genomic databases. Bioinformatics 23(13), i41–i48 (2007). https://doi.org/10.1093/bioinformatics/btm229

  7. Jelier, R., et al.: Searching for geneRIFs: concept-based query expansion and Bayes classification. In: TREC Proceedings, pp. 225–233 (2003)

    Google Scholar 

  8. Obermeyer, Z., Emanuel, E.J.: Predicting the future - big data, machine learning, and clinical medicine. New Engl. J. Med. 375(13), 1216 (2016). https://doi.org/10.1056/NEJMp1606181

  9. Tsuruoka, Y., Tsujii, J.I.: Improving the performance of dictionary-based approaches in protein name recognition. J. Biomed. Inform. 37(6), 461–470 (2004)

    Article  Google Scholar 

  10. Papamichail, D., Papamichail, G.: Improved algorithms for approximate string matching. BMC Bioinform. 10(1), S10 (2009)

    Article  Google Scholar 

  11. Wang, W., Xiao, C., Lin, X., Zhang, C.: Efficient approximate entity extraction with edit distance constraints. In: Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data, pp. 759–770 (2009)

    Google Scholar 

  12. Buschmann, T., Bystrykh, L.V.: Levenshtein error-correcting barcodes for multiplexed DNA sequencing. BMC Bioinform. 14(1), 272 (2013)

    Article  Google Scholar 

  13. Lasko, T.A., Hauser, S.E.: Approximate string matching algorithms for limited-vocabulary OCR output correction. In: Photonics West 2001-Electronic Imaging, pp. 232–240 (2000)

    Google Scholar 

  14. Wang, J., et al.: Interactive and fuzzy search: a dynamic way to explore MEDLINE. Bioinformatics 26(18), 2321–2327 (2010)

    Article  Google Scholar 

  15. Hersh, W.R., Bhupatiraju, R.T.: TREC genomics track overview. In: TREC Proceedings, pp. 14–23 (2003)

    Google Scholar 

  16. Bhalotia, G., Nakov, P., Schwartz, A.S., Hearst, M.A.: BioText Team report for the TREC 2003 Genomics Track. In: TREC Proceedings, pp. 612–621 (2003)

    Google Scholar 

  17. Jimeno-Yepes, A.J., Sticco, J.C., Mork, J.G., Aronson, A.R.: GeneRIF indexing: sentence selection based on machine learning. BMC Bioinform. 14(1), 171 (2013)

    Article  Google Scholar 

  18. Gobeill, J., Ruch, P., Zhou, X.: Query and document expansion with medical subject headings terms at medical Imageclef 2008. In: Peters, C., et al. (eds.) CLEF 2008. LNCS, vol. 5706, pp. 736–743. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04447-2_95

    Chapter  Google Scholar 

  19. Gobeill, J., et al.: Deep Question Answering for protein annotation. Database (Oxford) (2015). https://doi.org/10.1093/database/bav081

  20. Pasche, E., Teodoro, D., Gobeill, J., Ruch, P., Lovis, C.: QA-driven guidelines generation for bacteriotherapy. In: AMIA Annual Symposium Proceedings, pp. 509–513 (2009)

    Google Scholar 

  21. Mottin, L., et al.: neXtA5: accelerating annotation of articles via automated approaches in neXtProt. Database 2016, baw098 (2016)

    Google Scholar 

  22. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. In: Soviet Physics Doklady, vol. 10, no. 8, pp. 707–710 (1966)

    Google Scholar 

  23. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM (JACM) 21(1), 168–173 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pustejovsky, J., Castano, J., Cochran, B., Kotecki, M., Morrell, M.: Automatic extraction of acronym-meaning pairs from MEDLINE databases. Stud. Health Technol. Inform. 1, 371–375 (2001)

    Google Scholar 

  25. Europe PMC Consortium: Europe PMC: a full-text literature database for the life sciences and platform for innovation. Nucl. Acids Res. (2014). https://doi.org/10.1093/nar/gku1061

Download references

Acknowledgments

This research was supported by the Elixir Excelerate project, funded by the European Commission within the Research Infrastructures programme of Horizon 2020, grant agreement number 676559. The authors thank their colleagues from the SIB Swiss Institute of Bioinformatics (Core-IT), in particular Daniel Texeira and Heinz Stockinger, who provided insight and expertise that greatly assisted the research. The authors also thank the European Bioinformatics Institute, in particular Johanna McEntyre and Aravind Venkatesan, for the integration of retrieved geneRIFs into EuropePMC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Gobeill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gobeill, J., Pasche, E., Ruch, P. (2023). Retrieving the Evidence of a Free Text Annotation in a Scientific Article: A Data Free Approach. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2019. Lecture Notes in Computer Science, vol 13451. Springer, Cham. https://doi.org/10.1007/978-3-031-24337-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24337-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24336-3

  • Online ISBN: 978-3-031-24337-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics