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Abstract. Tokenization or segmentation is a wide concept that covers simple

processes such as separating punctuation from words, or more sophisticated pro-

cesses such as applying morphological knowledge. Neural Machine Translation

(NMT) requires a limited-size vocabulary for computational cost and enough ex-

amples to estimate word embeddings. Separating punctuation and splitting tokens

into words or subwords has proven to be helpful to reduce vocabulary and in-

crease the number of examples of each word, improving the translation quality.

Tokenization is more challenging when dealing with languages with no separator

between words. In order to assess the impact of the tokenization in the quality

of the final translation on NMT, we experimented on five tokenizers over ten

language pairs. We reached the conclusion that the tokenization significantly af-

fects the final translation quality and that the best tokenizer differs for different

language pairs.

1 Introduction

Segmentation is an essential process that has been extensively studied in literature (Nießen and Ney,

2004; Goldwater and McClosky, 2005; Dyer, 2009; Nguyen et al., 2010). It covers sim-

ple processes such as separating punctuation from words (tokenization), splitting words

in subparts based on their frequency or more sophisticated processes such as apply-

ing morphological knowledge. In this work, we use tokenization referring to separating

punctuation and splitting tokens into words or subwords.

Tokenizing words has proven to be helpful to reduce vocabulary and increase the

number of examples of each word. It is extremely important for languages in which

there is no separation between words and, therefore, a single token corresponds to more

than one word. The way in which tokens are split can greatly change the meaning of the

sentence. For example, the Japanese word警 means admonish, and察 means observe.

However, together they form the word police (警察). Therefore, a correct tokenization

can help to improve translation quality.

http://arxiv.org/abs/1812.08621v4
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In this study, we aim to find the impact of tokenization on the quality of the final

translation. To do so, we experimented with five tokenizers over ten language pairs. To

the best of our knowledge, this is the first work in which an exhaustive comparison

between tokenizers has been run for NMT. We include tokenizers based on morphology

that could guide the splitting of the words (Pinnis et al., 2017).

Some previous works include studying the effect of word-level preprocessing for

Arabic on Statistical Machine Translation (SMT). A comparison of several segmenters

for Chinese on SMT was done by Zhao et al. (2013). Huck et al. (2017) compared mor-

phological segmenters for German in NMT. Finally, Kudo (2018a) compared his statisti-

cal word segmenter with other well-known Japanese morphological segmenters, reach-

ing the conclusions that statistical segmenters worked better than morphological ones.

Our main contributions are as follows:

– First study of tokenizers for neural machine translation.

– Experimentation with five different tokenizers over ten language pairs.

The rest of this document is structured as follows: Section 2 introduces the neural

machine translation system used in this work. After that, in Section 3, we present the

tokenizers applied for comparison purposes. Then, in Section 4, we describe the exper-

imental framework, whose results are presented and discussed in Section 5. Section 6

shows some translation examples of the results. Finally, in Section 7, conclusions are

drawn.

2 Neural Machine Translation

Given a source sentence xJ
1

= x1, . . . , xJ of length J , NMT aims to find the best

translated sentence ŷÎ
1
= ŷ1, . . . , ŷÎ of length Î:

ŷÎ
1
= argmax

I,yI

1

Pr(yI
1
| xJ

1
) (1)

where the conditional translation probability is modelled as:

Pr(yI
1
| xJ

1
) =

I∏

i=1

Pr(yi | y
i−1

1
, xJ

1
) (2)

NMT frequently relies on a Recurrent Neural Network (RNN) encoder-decoder

framework. The source sentence is projected into a distributed representation at the

encoding step. Then, the decoder generates, at the decoding step, its translation word

by word (Sutskever et al., 2014).

The input of the system is a word sequence in the source language. Each word

is projected linearly to a fixed-size real-valued vector through an embedding matrix.

Then, these word embeddings are fed into a bidirectional (Schuster and Paliwal, 1997)

Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) network. As

a result, a sequence of annotations is produced by concatenating the hidden states from

the forward and backward layers.



How Much Does Tokenization Affect Neural Machine Translation? 3

An attention mechanism (Bahdanau et al., 2015) allows the decoder to focus on

parts of the input sequence, computing a weighted mean of annotated sequences. A soft

alignment model computes these weights, weighting each annotation with the previous

decoding state.

Another LSTM network is used for the decoder. This network is conditioned by

the representation computed by the attention model and the last generated word. Fi-

nally, a distribution over the target language vocabulary is computed by the deep output

layer (Pascanu et al., 2013).

The model is trained by applying stochastic gradient descent jointly to maximize

the log-likelihood over a bilingual parallel corpus. At decoding time, the model approx-

imates the most likely target sentence with beam-search (Sutskever et al., 2014).

3 Tokenizers

In this section, we present the tokenizers we employed in order to assess their impact

on the quality of the final translation.

SentencePiece3: an unsupervised text tokenizer and detokenizer mainly for Neural

Network-based text generation systems where the vocabulary size is predetermined

prior to the neural model training. It can be used for any language, but its models

need to be trained for each of them. To do so, we used the unigram (Kudo, 2018b)

mode and a vocabulary size of 32000 over each corpora’s training partition. Fig. 1a

shows an example of tokenizing a sentence using SentencePiece.

Mecab4: an open source morphological analysis engine for Japanese, based on con-

ditional random fields. It extracts morphological and syntactical information from

sentences and splits tokens into words. Fig. 1b shows an example of tokenizing a

sentence using Mecab.

Stanford Word Segmenter (Tseng et al., 2005): a Chinese word segmenter based on

conditional random fields. Using a set of morphological and character reduplication

features, it is able to split Chinese tokens into words. In this work, we use the

toolkit’s CTB scheme. Fig. 1c shows an example of tokenizing a sentence using

Stanford Word Segmenter.

OpenNMT tokenizer (Klein et al., 2017): the tokenizer included with the OpenNMT

toolkit. It normalizes characters (e.g., quotes Unicode variants) and separates punc-

tuation from words. It can be used with any language. Fig. 1d shows an example of

tokenizing a sentence using OpenNMT tokenizer.

Moses tokenizer (Koehn et al., 2007): the tokenizer included with the Moses toolkit.

It separates punctuation from word —preserving special tokens such as URL or

dates— and normalizes characters (e.g., quotes Unicode variants). It can be used

with any language. Fig. 1e shows an example of tokenizing a sentence using Moses

tokenizer.

3
https://github.com/google/sentencepiece

4 http://taku910.github.io/mecab/

https://github.com/google/sentencepiece
http://taku910.github.io/mecab/
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Original: In a browser window (Internet Explorer or Firefox) browse to

www.dellconnect.com.

Segmented: In a browser window ( Internet Explorer or Firefox ) browse to www . dell

connect . com .

(a) Example of a sentence tokenized using SentencePiece. indicates the start of a word in the

original sentence. The tokenization has split punctuation and transformed the url into several

words.

Original: ブラウザウィンドウ(Internet Explorerまた

はFirefox)で、www.dellconnect.comにアクセスします。

Segmented:ブラウザウィンドウ ( Internet Explorerまたは Firefox )で、 www .

dellconnect . comにアクセスします。

(b) Example of a sentence tokenized using Mecab. In the original sentence, the only spaces

were written to separate foreign words (Internet Explorer). The tokenization has added spaces

between Japanese words, split the punctuation and transformed the url into several words.

Original: 到 http://www.kace.com/trial，然后“下 K1000用版”，将的 OVF（放虚化格

式）文件下到 vSphere系。

Segmented:到 http : //www.kace.com/trial，然后 “下 K1000用版 ”，将 的 OVF（放虚

化格式）文件下到 vSphere系。

(c) Example of a sentence tokenized using Stanford Word Segmenter. The original sentence only

contained spaces to separate foreign words (e.g., vSphere). The tokenization has added spaces

between the Chinese words, split the punctuation, and separated the http: from the url.

Original: In a browser window (Internet Explorer or Firefox) browse to

www.dellconnect.com.

Segmented: In a browser window ( Internet Explorer or Firefox ) browse to www . dellconnect .

com .

(d) Example of a sentence tokenized using OpenNMT tokenizer. The tokenization has split

punctuation and transformed the url into several words.

Original: In a browser window (Internet Explorer or Firefox) browse to

www.dellconnect.com.

Segmented: In a browser window ( Internet Explorer or Firefox ) browse to

www.dellconnect.com.

(e) Example of a sentence tokenized using Moses tokenizer. The tokenization has split the

punctuation, without modifying the url.

Fig. 1: Examples of segmenting sentences with each word segmenter.



How Much Does Tokenization Affect Neural Machine Translation? 5

4 Experimental Framework

In this section, we describe the corpora, systems and metrics used in order to asses our

proposal.

4.1 Corpora

The corpora selected for our experimental session was extracted from translation memo-

ries from the translation industry. The files are the result of professional translation tasks

demanded by real clients. The general domain is technical (see Table 1 for the specific

content of each language pair), which is harder for NMT than other general domains

such as news. Unlike in other domains, in technical domains certain words correspond

to specific terms and have a different translation to their most frequent one: e.g., rear

arm translates into German as hinterer Arm. However, in this domain, it should be trans-

lated as hinterer Querlenker. In order to increase language diversity, we selected the

following language-pairs: Japanese–English, Russian–English, Chinese–English, Ger-

man–English, and Arabic–English. Table 2 shows the corpora statistics.

Specific Domain
Language

Ja–En Ru–En Zh–En De–En Ar–En

Computer Software - Instructions for use X X

Medical Equipment and Supplies X X X X X

Consumer Electronics X X X X

Industrial Electronics X X

Stores and Retail Distribution X X X

Healthcare X

Table 1: Specific domains for each language pair. Ja stands for Japanese, En for English,

Ru for Russian, Zh for Chinese, De for German and Ar for Arabic.

The training dataset is composed of around three million sentences in the Ger-

man–English language pair and around half a million sentences in the rest of the lan-

guage pairs. Development and test datasets are composed of two thousand sentences for

all the language pairs.

4.2 Systems

NMT systems were trained with OpenNMT (Klein et al., 2017). We used LSTM units

taking into account the findings in (Britz et al., 2017). The size of the LSTM units

and word embeddings were set to 1024. We used Adam (Kingma and Ba, 2014) with

a learning rate of 0.0002 (Wu et al., 2016), a beam size of 6 and a batch size of 20.

We reduced the vocabulary using Byte Pair Encoding (BPE) (Sennrich et al., 2016),

training the models with a joint vocabulary of 32000 BPE units. Finally, the corpora

were lowercased and, later, recased using OpenNMT’s tools.
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Partition Type
Language

Ja–En Ru–En Zh–En De–En Ar–En

Train

Sentences 532.0K 496.0K 460.8K 2.9M 557.0K

Tokens 10.0/7.3M 7.6/7.4M 6.7/6.4M 35.9/39.4M 7.3/7.8M

Vocabulary 41.5/111.6K 180.9/133.3K 82.8/102.6K 1.1M/615.7K 115.5/61.8K

TokensBPE 10.5/8.3M 9.8/9.5M 7.5/7.4M 49.8/49.0M 8.4/8.7M

VocabularyBPE 16.0/17.1K 24.8/11.6K 22.0/16.6K 25.6/22.3K 21.6/10.7K

Development

Sentences 2000 2000 2000 2000 2000

Tokens 39.0/27.6K 34.0/32.2K 27.8/27.8K 42.4/45.4K 21.1/21.7K

Vocabulary 2.3/3.4K 7.6/5.4K 2.7/3.8K 6.2/4.4K 3.6/2.9K

TokensBPE 42.1/31.3K 41.2/38.5K 29.5/31.2K 53.7/51.0K 23.3/24.2K

VocabularyBPE 1.9/2.5K 6.5/3.7K 2.5/2.9K 4.9/3.6K 3.4/2.1K

Test

Sentences 2000 2000 2000 2000 2740

Tokens 18.4/26.8K 28.6/28.3K 48.7/30.5K 41.7/44.6K 22.1/23.3K

Vocabulary 3.5/3.9K 7.3/5.1K 9.2/3.8K 6.0/4.3K 3.2/2.6K

TokensBPE 39.5/30.2K 98.7/94.4K 32.9/35.6K 83.9/82.8K 34.4/32.9K

VocabularyBPE 1.8/2.7K 8.0/5.4K 2.7/3.0K 8.3/6.8K 4.1/2.3K

Table 2: Corpora statistics. Ja stands for Japanese, En for English, Ru for Russian, Zh

for Chinese, De for German and Ar for Arabic. TokensBPE and VocabularyBPE are the

number of tokens and size of the vocabulary after applying BPE to the corpora. K stands

for thousand and M for millions.

4.3 Evaluation metrics

We made use of the following well-known metrics to assess our proposal:

BiLingual Evaluation Understudy (BLEU) (Papineni et al., 2002): corresponds to

the geometric average of the modified n-gram precision. It is multiplied by a brevity

factor to penalize short sentences.

Translation Error Rate (TER) (Snover et al., 2006): number of word edit operations

(insertion, substitution, deletion, and swapping), normalized by the number of words

in the final translation.

Confidence intervals (p = 0.05) are computed for all metrics by means of bootstrap

resampling (Koehn, 2004).

5 Results

In this section, we present the results of the experiments conducted in order to assess

the impact of the tokenizer on the translation quality. Table 3 shows the experimental

results.

For the Ja–En experiment, the best results were yielded by Moses tokenizer and

Mecab. It must be taken into account that in both experiments, the English side of the

corpus was segmented with Moses tokenizer, this means that the segmentation of the

target side has a greater impact on the translation quality. Overall, there is a quality
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Language
SentencePiece OpenNMT tokenizer Moses tokenizer Mecab Stanford

BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER

Ja–En 32.0 ± 1.3 51.1± 1.5 29.1± 1.4 54.7 ± 1.4 36.3± 1.4 47.5± 1.3 36.0± 1.5 48.6 ± 1.4 - -

En–Ja 26.5 ± 1.4 62.5± 1.9 25.0± 4.4 89.9 ± 4.1 33.6± 2.3 61.0 ± 2.5 45.8± 1.3 43.7 ± 1.3 - -

Ru–En 12.9 ± 0.9 72.7± 1.1 11.9± 0.9 74.9 ± 1.3 15.3± 1.0 68.6± 1.2 - - - -

En–Ru 12.2 ± 0.8 75.0± 1.0 11.3± 0.9 77.3 ± 1.1 16.3± 1.2 70.4± 1.6 - - - -

Zh–En 20.5 ± 1.1 64.8± 1.2 23.1± 1.3 64.8 ± 1.3 27.5± 1.3 59.8± 1.2 - - 26.0± 1.3 59.3± 1.2

En–Zh 17.1 ± 1.2 71.2± 1.2 10.4± 3.9 101.1 ± 3.1 21.4± 2.0 65.8 ± 1.7 - - 29.9± 1.2 55.6± 1.2

De–En 21.4 ± 0.8 67.8± 2.1 29.6± 0.9 54.2± 0.9 30.3± 0.9 52.8± 0.9 - - - -

En–De 16.1 ± 0.7 76.4± 2.3 22.5± 0.9 65.0± 1.5 23.6± 0.9 62.9± 1.0 - - - -

Ar–En 17.9± 0.8 66.9± 1.3 14.8± 0.8 71.3 ± 1.1 19.1± 0.9 65.4± 1.9 - - - -

En–Ar 10.1 ± 0.6 75.3± 1.3 9.2± 0.6 77.2 ± 0.9 12.4± 0.7 69.8± 0.9 - - - -

Table 3: Experimental results comparing the translation quality produced by using the

different tokenizers. In the columns Mecab and Stanford, Moses tokenizer was used

for segmenting the English part of the corpora since both Mecab and Stanford Word

Segmenter only work for Japanese and Chinese respectively. Best results are denoted in

bold.

improvement of around 4 points in terms of BLEU and 3 points in terms of TER with

respect to the tokenizer which yielded the second best results.

For En–Ja, the best results were yielded by Mecab, representing a significant im-

provement (around 12 points in terms of BLEU and 15 points in terms of TER) with

respect to the tokenizer which yielded the second best results. Most likely, this is due to

Mecab being developed specifically to segment Japanese.

For Ru–En and En–Ru, Moses tokenizer yielded the best results (with improvements

of around 2 to 4 points in terms of BLEU and 5 points in terms of TER). It is worth not-

ing that, in both cases, SentencePiece and OpenNMT tokenizer yielded similar results.

The Chinese experiments behaved similarly to the Japanese experiments: Moses

tokenizer and Stanford Word Segmenter (the specific Chinese word tokenizer, which in-

cluded using Moses tokenizer for segmenting the English part of the corpus) achieved

the best results when translating to English (yielding an improvement of around 7 points

in terms of BLEU and 5 points in terms of TER), and Stanford Word Segmenter achieved

the best results when translating to Chinese (yielding an improvement of around 8

points in terms of BLEU and 20 points in terms of TER).

For the German experiments, the best results were yielded by both OpenNMT to-

kenizer and Moses tokenizer, representing an improvement of around 7 to 9 points in

terms of BLEU and 14 to 17 points in terms of TER. It is worth noting how, despite

being the largest corpora, SentencePiece—which learns how to segment from the cor-

pora’s training data—yielded the worst results. As a future study, we should evaluate

the relation between the size of the corpora and the quality yielded by SentencePiece.

Finally, Arabic behaved similarly to Russian, with Moses tokenizer yielding the

best results for both Ar–En and En–Ar (representing improvements of around 2 to 4

points in terms of BLEU and 4 to 6 points in terms of TER). However, SentencePiece

performed similar to Moses tokenizer when translating to English. When translating to

Arabic, both SentencePiece and OpenNMT tokenizer yielded similar results.
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Overall, Moses tokenizer yielded the best results for German, Russian and Arabic

experiments. When using specialized morphologically oriented tokenizers, the system

using Mecab obtained the best results for Japanese experiments; and Stanford Word Seg-

menter for Chinese experiments. Additionally, OpenNMT tokenizer and SentencePiece

yielded the worst translation quality in all experiments. An explanation for these poor

results is that OpenNMT tokenizer is fairly simple: it only separates punctuation sym-

bols from words. However, this is not the case for SentencePiece. We think that using

SentencePiece in a bigger training dataset in order to better learn the segmentation could

help to improve their results. Nonetheless, as mentioned before, we have to corroborate

this in a future work.

6 Qualitative Analysis

Example 1

Source Revalidation of single-pilot single-engine class ratings

Reference verlängerung von klassenberechtigungen für einmotorige flugzeuge mit einem piloten

SentencePiece verlängerung der einzelantriebsklasse einmotorischer motorklasse

OpenNMT tokenizer zur validierung der einmotorik-einzelmaschine mit einzelantrieb

Moses tokenizer verlängerung von klassenberechtigungen für einmotorige flugzeuge mit einem piloten

Example 2

Source Cold drawing of wire

Reference herstellung von kaltgezogenem draht

SentencePiece kalt zeichnung des drahtes

OpenNMT tokenizer kaltbildzeichnung

Moses tokenizer herstellung von kaltgezogenem draht

Table 4: English to German translation examples comparing SentencePiece, OpenNMT

tokenizer and Moses tokenizer. First line corresponds to the source sentence in English,

second line to the German reference and third, forth and fifth lines to the translations

generated using SentencePiece, OpenNMT tokenizer and Moses tokenizer respectively

to segment the corpora. Correct translations hypothesis are denoted in bold, and incor-

rect translations are denoted in italic.

We obtained a better performance using Moses tokenizer than OpenNMT tokenizer

and SentencePiece. In order to qualitatively analyze this performance, Table 4 shows

a couple of examples of translation outputs generated using SentencePiece, OpenNMT

tokenizer and Moses tokenizer for segmenting the corpora.

The first example clearly shows a better performance when using Moses tokenizer

rather than SentencePiece. The translation output from the system trained using Moses

tokenizer for segmenting matches the reference. However, the output translations of

the systems using OpenNMT tokenizer and SentencePiece are wrong. Translation seg-

mented with OpenNMT tokenizer contains many repetitions and lacks sense. Addition-

ally, translation segmented by SentencePiece has problems repeating some words in

the translation (e.g., motor) and missing some translation words (e.g., the translation of

pilot).
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The system’s behavior using Moses tokenizer in the second example is similar: its

translation matches the reference. By contrast, the systems using SentencePiece and

OpenNMT tokenizer translated wrongly. The system using SentencePiece translated all

the words from the source but its translation is not grammatically correct. A correct

translation could be kalte Zeichnung des Drahtes. Lastly, OpenNMT tokenizer’s perfor-

mance is the worst in this case: the translation of its system ignored the word wire.

Therefore, we observed that, despite sharing the same data and model architecture,

the behavior of the systems’ translation changed as a result of using a different tok-

enizer.

7 Conclusions

In this study, we tested different tokenizers to evaluate their impact on the quality of the

final translation. We experimented using 10 language pairs and arrived to the conclusion

that tokenization has a great impact on the translation quality, achieving gains of up to

12 points of BLEU and 15 points of TER.

Additionally, we observed that there was not a single best tokenizer. Each one pro-

duced the best results for certain language pairs. Although, in some cases, those best

results overlapped with the ones yielded by other tokenizers. Moreover, we have seen

different behaviors depending on the language pair direction. The system using Senten-

cePiece obtained the best results for Ar–En, but not for En–Ar translation.

As a future work, we would like to evaluate the relation between the size of the cor-

pora and the quality yielded by SentencePiece—which uses each language’s training

corpora to learn how to segment. It would also be interesting to compare more segmen-

tation strategies such as separating by characters or fixed n-grams. Finally, we would

like to confirm that repeating these experiments on some of the general domain training

data used for these languages achieves similar effects.
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