Skip to main content

Text Preprocessing for Shrinkage Regression and Topic Modeling to Analyse EU Public Consultation Data

  • Conference paper
  • First Online:
Computational Linguistics and Intelligent Text Processing (CICLing 2019)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13451))

  • 348 Accesses

Abstract

Most text categorization methods use a common representation based on the bag of words model. Use this representation for learning involve a preprocessing step including many tasks such as stopwords removal and stemming. The output of this step has a direct influence on the quality of the learning task. This work aims at comparing different methods of preprocessing of textual inputs for LASSO logistic regression and LDA topic modeling in terms of mean squared error (MSE). Logistic regression and topic modeling are used to predict a binary position, or stance, with the textual data extracted from two public consultations of the European Commission. Texts are preprocessed and then input into LASSO and topic modeling to explain or cluster the documents’ positions. For LASSO, stemming with POS-tag is on average a better method than lemmatization and stemming without POS-tag. Besides, tf-idf on average performs better than counts of distinct terms, and deleting terms that appear only once reduces the prediction errors. For LDA topic modeling, stemming gives a slightly lower MSE in most cases but no significant difference between stemming and lemmatization was found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Consultations of the European Commission: https://ec.europa.eu/info/consultations_en.

  2. 2.

    https://spacy.io/.

  3. 3.

    https://pypi.org/project/nltk/.

  4. 4.

    https://pypi.org/project/gensim/.

  5. 5.

    https://scikit-learn.org/.

  6. 6.

    Tf-idf is a statistical measure that evaluates how a term is important to a document in a collection, computed as: \(tf\text{- }idf_{t,d} = tf_{t,d} \times idf_{t} \) where \(idf_{t} = log( \frac{n_{documents}}{df_{t}})\) and \(df_{t} = \) number of documents containing t.

References

  1. Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205. IEEE (2015)

    Google Scholar 

  2. Gao, W., Hu, L., Zhang, P., Wang, F.: Feature selection by integrating two groups of feature evaluation criteria. Expert Syst. Appl. 110, 11–19 (2018)

    Article  Google Scholar 

  3. Labani, M., Moradi, P., Ahmadizar, F., Jalili, M.: A novel multivariate filter method for feature selection in text classification problems. Eng. Appl. Artif. Intell. 70, 25–37 (2018)

    Article  Google Scholar 

  4. Uysal, A.K., Gunal, S.: A novel probabilistic feature selection method for text classification. Knowl.-Based Syst. 36, 226–235 (2012)

    Article  Google Scholar 

  5. Uysal, A.K., Gunal, S.: The impact of preprocessing on text classification. Inf. Process. Manag. 50, 104–112 (2014)

    Article  Google Scholar 

  6. Vijayarani, S., Ilamathi, M.J., Nithya, M.: Preprocessing techniques for text mining-an overview. Int. J. Comput. Sci. Commun. Netw. 5, 7–16 (2015)

    Google Scholar 

  7. Korenius, T., Laurikkala, J., Järvelin, K., Juhola, M.: Stemming and lemmatization in the clustering of finnish text documents. In: Proceedings of the Thirteenth ACM International Conference on Information and Knowledge Management, pp. 625–633. ACM (2004)

    Google Scholar 

  8. Leopold, E., Kindermann, J.: Text categorization with support vector machines. How to represent texts in input space? Mach. Learn. 46, 423–444 (2002)

    Article  MATH  Google Scholar 

  9. Méndez, J.R., Iglesias, E.L., Fdez-Riverola, F., Díaz, F., Corchado, J.M.: Tokenising, stemming and stopword removal on anti-spam filtering domain. In: Marín, R., Onaindía, E., Bugarín, A., Santos, J. (eds.) CAEPIA 2005. LNCS (LNAI), vol. 4177, pp. 449–458. Springer, Heidelberg (2006). https://doi.org/10.1007/11881216_47

    Chapter  Google Scholar 

  10. Toman, M., Tesar, R., Jezek, K.: Influence of word normalization on text classification. Proc. InSciT 4, 354–358 (2006)

    Google Scholar 

  11. Genkin, A., Lewis, D.D., Madigan, D.: Large-scale Bayesian logistic regression for text categorization. Technometrics 49, 291–304 (2007)

    Article  MathSciNet  Google Scholar 

  12. Onan, A., Korukoğlu, S., Bulut, H.: Ensemble of keyword extraction methods and classifiers in text classification. Expert Syst. Appl. 57, 232–247 (2016)

    Article  Google Scholar 

  13. Gentzkow, M., Kelly, B.T., Taddy, M.: Text as data. Technical report, National Bureau of Economic Research (2017)

    Google Scholar 

  14. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  15. Sukhija, N., Tatineni, M., Brown, N., Moer, M.V., Rodriguez, P., Callicott, S.: Topic modeling and visualization for big data in social sciences. In: 2016 Intl IEEE Conferences on Ubiquitous Intelligence Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), pp. 1198–1205 (2016)

    Google Scholar 

  16. Yoon, H.G., Kim, H., Kim, C.O., Song, M.: Opinion polarity detection in twitter data combining shrinkage regression and topic modeling. J. Informet. 10, 634–644 (2016)

    Article  Google Scholar 

  17. Roberts, M.E., Stewart, B.M., Tingley, D., Lucas, C., Leder-Luis, J., Gadarian, S.K., Albertson, B., Rand, D.G.: Structural topic models for open-ended survey responses. Am. J. Polit. Sci. 58, 1064–1082 (2014)

    Article  Google Scholar 

  18. Manning, C.D., Raghavan, P., Schutze, H.: Stemming and lemmatization. In: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  19. Porter, M.F.: An algorithm for suffix stripping. Program 14, 130–137 (1980)

    Article  Google Scholar 

  20. Fellbaum, C.: Wordnet. Wiley Online Library (1998)

    Google Scholar 

  21. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  22. Flynn, C.J., Hurvich, C.M., Simonoff, J.S.: Efficiency for regularization parameter selection in penalized likelihood estimation of misspecified models. J. Am. Stat. Assoc. 108, 1031–1043 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Newman, D., Lau, J.H., Grieser, K., Baldwin, T.: Automatic evaluation of topic coherence. In: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, HLT 2010, Stroudsburg, PA, USA, pp. 100–108. Association for Computational Linguistics (2010)

    Google Scholar 

  24. Röder, M., Both, A., Hinneburg, A.: Exploring the space of topic coherence measures. In: Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, WSDM 2015, pp. 399–408. ACM, New York (2015)

    Google Scholar 

  25. Sievert, C., Shirley, K.E.: LDAvis: a method for visualizing and interpreting topics. In: Proceedings of the Workshop on Interactive Language Learning, Visualization, and Interfaces (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nada Mimouni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mimouni, N., Yeung, T.YC. (2023). Text Preprocessing for Shrinkage Regression and Topic Modeling to Analyse EU Public Consultation Data. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2019. Lecture Notes in Computer Science, vol 13451. Springer, Cham. https://doi.org/10.1007/978-3-031-24337-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24337-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24336-3

  • Online ISBN: 978-3-031-24337-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics