
EDGAR: Embedded
Detection of Gunshots by AI in Real-time

Nathan Morsa12[0000−0003−4549−7834]

1 Department of Electrical Engineering & Computer Science, University of Liège
2 Research & Development, FN Herstal, Belgium

nathan.morsa@uliege.be

Abstract. Electronic shot counters allow armourers to perform preven-
tive and predictive maintenance based on quantitative measurements,
improving reliability, reducing the frequency of accidents, and reducing
maintenance costs. To answer a market pressure for both low lead time to
market and increased customisation, we aim to solve the shot detection
and shot counting problem in a generic way through machine learning.
In this study, we describe a method allowing one to construct a dataset
with minimal labelling effort by only requiring the total number of shots
fired in a time series. To our knowledge, this is the first study to propose a
technique, based on learning from label proportions, that is able to exploit
these weak labels to derive an instance-level classifier able to solve the
counting problem and the more general discrimination problem. We also
show that this technique can be deployed in heavily constrained micro-
controllers while still providing hard real-time (<100ms) inference. We
evaluate our technique against a state-of-the-art unsupervised algorithm
and show a sizeable improvement, suggesting that the information from
the weak labels is successfully leveraged. Finally, we evaluate our technique
against human-generated state-of-the-art algorithms and show that it
provides comparable performance and significantly outperforms them in
some offline and real-world benchmarks.

Keywords: Event Detection · Time Series Classification · Preventive
Maintenance · Deep Learning · Weak Labels · Label Proportions ·
Resource-Constrained Devices.

1 Introduction

1.1 Motivation for Electronic Shot Counters

In recent years, the defence industry has seen an increasing interest in preventive
and predictive maintenance. In the context of infantry firearms, the number of
rounds fired is the prime contributor to their deterioration. Thus, keeping track of
the number of rounds fired is an important part of weapon maintenance as it allows
a quantitative measure of wear and tear. While this operation has historically been
done through logbooks updated manually by operators, these are prone to human
error and can prove unreliable. Entries might be omitted or subject to inaccurate

ar
X

iv
:2

21
1.

14
07

3v
1

 [
cs

.L
G

]
 2

5
N

ov
 2

02
2

2 N. Morsa

estimations. The introduction of electronic shot counters to individual weapons
allows for much more accurate tracking of weapon usage. These devices are either
clipped on or embedded in the firearm and usually rely on MEMS accelerometers,
measuring in particular, the acceleration in the firing axis to provide shot detection
and counting, burst rate evaluation, and ammunition type discrimination. This
allows armourers to perform more accurate maintenance of their inventory by both
prioritizing weapons in most need of maintenance and potentially skipping those
which have not been operated since their previous maintenance. In addition, the
maintenance can more reliably be performed in a data-driven, predictive manner.
Modern firearms maintenance guidelines can be broken down into manufacturer-
provided estimations for individual parts or components given as an average lifespan
in amounts of shots. This allows the armourer to replace those parts preemptively,
avoiding potential firearms malfunction during operation. This change in mainte-
nance paradigm is estimated to save up to 50% on armourer labour time, increase
weapon availability up to 90%, and reduce operating costs by up to 20%. [3]

While some shot counters employ different types of sensors, our proposed
method should be equally applicable to any temporal data from one or a combi-
nation of sensors. Although microphones are a popular method of shot counting in
controlled environments such as shooting ranges, they require exposing an external
sensor that is not compatible with military requirements for weapons which include
prolonged exposure to hostile environments such as water, salt, dust, grease or acid.
They also suffer from echoes in enclosed environments requiring frequent recalibra-
tion. Magnet-based methods have shown very effective; however, the requirement
for close proximity to the firing mechanism is often a cause for concern due to either
encumbrance or safety reasons. They also require more expensive parts. As a result,
accelerometer-based solutions have been preferred by the defence market as these
can be fully and invisibly embedded in any part of the weapon, in particular grips
and handles, which are often hollow and separated from the firing mechanism.

1.2 Counting Problem

The problem of counting the number of shots in a time series lies firstly in detecting
relatively-rare individual events from unrelated ones, such as normal weapon
manipulations or falls on hard ground interspersed in-between shots. We illustrate
some example inputs in Figure 1. Example #1 shows a shot that is followed in close
proximity by a purely mechanical event which should not be counted. Example #2
illustrate other non-shot events. In addition, shots need to be discerned from each
other for proper counting and the start of each one properly identified for burst rate
evaluation. However, shots can present a wide variety of signatures depending on ex-
ternal factors (see Section 3). Example #3 shows shots fired with the same weapon
as#1 presenting differing signatures both from#1 and from each other even though
they happen in close succession. Example #4 shows how shots can blend into each
other rendering individual detection difficult, with the common occurrence of a me-
chanical event also blending in at the end of a burst. Mechanical events visually very
similar to shots also happen in close proximity. Examples #4, 5 and 6 are taken from
different weapons and show how the signature can significantly differ between them.

EDGAR: Embedded Detection of Gunshots by AI in Real-time 3

0.00 0.02 0.04 0.06 0.08 0.10
−200

−100

0

100

200

1

#1

0.0 0.1 0.2 0.3 0.4 0.5
−200

−100

0

100

200
#2

0.000 0.025 0.050 0.075 0.100 0.125 0.150
−200

−100

0

100

200

1 2

#3

0.0 0.5 1.0 1.5 2.0
−200

−100

0

100

200

1 2 3 4 5 6 7 8 910

#4

0.0 0.2 0.4 0.6 0.8 1.0
−200

−100

0

100

200

1 2 3 4 5 6 7 8 9 10 11 12 13 1415

#5

0.0 0.2 0.4 0.6 0.8 1.0
−200

−100

0

100

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

#6

Time [s]

Ac
ce

le
ra

tio
n

[g
]

Fig. 1. Example inputs (high resolution available in digital version). Events have been
individually labelled by a human expert between shot in green (numbered at the bottom)
and non-shot in red.

1.3 The Case for Machine Learning

As the market for shot counters develops, requests for new types of shot counters
have increasingly high requirements and lower accepted lead time. Nowadays,
clients of the defence industry expect a higher grade of personalisation, including
modifications impacting the core design of the weapon and necessitating new R&D
work. On the other hand, fast product delivery is also more and more expected in
an increasingly competitive market. This has led to a fundamental restructuring
of the manufacturing processes from make-to-stock to assemble-to-order and even
engineer-to-order strategies.

In recent public tenders of the firearms market, shot counters have progressively
become an important criterion in the attribution process. It is thus growingly
important for shot counters to be available with very low delay, ideally at the latest
when the weapon prototype is delivered to the client for initial testing so that
the shot counter can be evaluated alongside its platform. However, since a shot
counter can only be developed when at least one corresponding weapon design
prototype is available, the window of time left for development between the end
of the weapon R&D work and the first delivery can be slim, sometimes in the order
of a few weeks. Combined with the increasing complexity of the many existing

4 N. Morsa

weapon variants leading to a correspondingly high required development time as
described in Section 3, the current techniques of manually written algorithms can
result in a failure to meet the market.

The automatisation of the shot counting algorithm generation aims to alleviate
this issue by trading labour time from a qualified expert to computation time,
which can be scaled through cloud computing according to urgency. In addition,
automatically-generated algorithms have been shown to outperform and replace
human-generated ones in some situations. However, as further described in Sec-
tion 2, there is currently no publicly available generic technique for automatically
deriving shot counting algorithms.

1.4 Contributions

Our paper makes the following contributions:

– We describe a procedure allowing one to use a single-axis accelerometer to
construct a dataset representative of a firearm’s behaviour with minimal work
related to data labelling through weak labels only.

– We propose a new technique that is able to exploit these weak labels to derive
an instance-level classifier able to solve the counting problem and the more
general discrimination problem.

– To our knowledge, we are the first to propose a neural network structure
suitable to solve this problem in real-time on embedded microcontrollers.

– We propose a series of generic and domain-specific improvements to the base
technique allowing it to reach much higher performance levels.

– We evaluate our technique against a state-of-the-art unsupervised algorithm
and show a very large improvement, suggesting that the information from the
weak labels is successfully leveraged.

– We finally evaluate our technique against human-generated state-of-the-art
algorithms and show that it provides comparable performance and significantly
outperforms them in some offline and real-world benchmarks.

2 Related Work

Owing to the specific nature of the problem and the relatively recent industry
interest in embedded shot counters, publicly available academic research on this
specific problem is scarce. FNHerstal owns several international patents on the topic
since 2006. In particular, one covers the use of successive events in accelerometer
data for the purpose of shot counting [4] and has likely hindered further research
into exploiting this signal. Loeffler [7] and Reese [11] limit themselves to low scale
and sampling frequency, are restricted to a few shots and do not make use of
machine learning. Ufer et al. [14] offer a calibration technique on a pre-made expert
algorithm. Calhoun et al. [1] propose a method for gunshot detection involving deep
learning; however, this technique is aimed solely at acoustic detection (not counting)
from a network of city-wide microphones and involves a human in the loop.

EDGAR: Embedded Detection of Gunshots by AI in Real-time 5

Inspiration could be gleaned from the richly studied domain of fall detection. For
example, Putra et al. [10] study accelerometer-based fall detection by decomposing
the impact into sub-events in the time domain, thereby showing similarities with
our problem and applying machine learning techniques. A recent paper by Santos et
al. [12] applies deep-learning techniques to this same problem and proposes a CNN
with good results when using data augmentation techniques. These approaches
however rely on strongly labelled data.

A recent patent application by Weiss et al. [15] for Secubit Ltd. details con-
current work aimed at using deep-learning for shot counting from accelerometer
data, facultatively augmented by other sensors.The method proposed in this work
differs from the Weiss et al. patent in many aspects:

– A concrete proposition is made for the model structure, data preprocessing,
effective input vector selection, dataset construction, training process and an
effective method for ammunition type discrimination.

– Our work proposes an innovative technique allowing us to leverage the low-
effort data about the number of shots contained in a time series. This allows
efficient learning directly from the input dataset in its whole variance without
the need for potentially unrepresentative GAN-synthesized data.

– Our technique shows performance best with an input vector significantly
smaller than the normal event length.

– Our technique can be entirely performed in an embedded device in real-time,
requiring no intermediate representation to be stored and/or transferred.

– The Weiss et al. proposition does not make a concrete description of how their
technique can be employed in an embedded device, apart from the flow control
system and mentioning possible optimizations through graph pruning and
knowledge distillation. Our technique bypasses the need for these optimizations
by directly training a network adapted to the target platform.

3 Dataset Acquisition and Construction

For a given model and calibre of firearm, the following external variables are
known to have a significant impact on the weapon behaviour: shooting sequence,
ammunition type, ammunition load, gas-operated reloading nozzle size, shooter
position/mounting mechanism, mounted accessories weight, ammunition loading
type, usage of a suppressor, shooting angle, weapon and canon temperature, firearm
dirtiness, and firearm wear and tear (by including both new and used weapons).

To acquire a dataset representative of the whole spectrum of possible real-life
weapon behaviours, one would ideally have to record and control these external
variables independently. However, the number of variables and the large space of
possible values for each of them can rapidly lead to an unmanageable number of
combinations. As a result, a discrete and possibly reduced number of significantly
differing settings for each variable will be chosen according to expert armourer
knowledge of the weapon and existing experimental results. A reduced number of
combinations will then be chosen according to the development budget, attempting
to capture both nominal and extreme behaviours of the weapon.

6 N. Morsa

Raw data can be acquired by recording the sensor output while operating the
weapon. However, the labelling of this data presents a significant challenge: Cre-
ating strong labels identifying the position of individual shots in the data requires
the intervention of a firearms expert to discern shots from unrelated acceleration
events. This is a very labour-intensive task and is prone to human error. On the
other hand, weak labels in the form of a total number of shots fired in a given
recording can be produced cheaply and reliably by manually counting the number
of rounds used, especially when these come in pre-numbered containers such as
ammunition boxes and magazines.

4 Proposed Method

To exploit our dataset, we need to find a technique allowing us to work from the
weak labels. This can be accomplished by finding a way to reformulate the counting
problem into a category proportion problem. To do so while keeping a detector with
suitable time and space constraints for embedded use, two hypotheses are made:

1. A shot has a finite and known maximum duration.
2. At least one sub-event of a shooting event can always be reliably distinguished

from the background noise.

Hypothesis 1 is related to the length of the candidate windows that will be
considered. Since it imposes no maximum bound on the duration, a sufficiently
large number will always exist to satisfy it. However, larger numbers will negatively
impact the performance of the resulting detector. A good number can be easily
derived from the minimum theoretical burst rate of the weapon.

Hypothesis 2 allows us to reduce the number of candidate windows that will be
considered. It is done by producing candidate windows only when a certain metric
is satisfied, preventing useless computations during rest periods where the only
input is background noise. The difference between metric and detector is that the
metric is not subject to any constraint on the number of false positives it provides.
However, a metric with fewer false positives will further reduce the computation
time. It is important that the metric avoids false negatives, which would result in
a valid candidate not being presented to the detector.

Satisfying hypothesis 2 in practice will depend on the nature of the input signal.
For the most common input signal of accelerometer time series, we propose the
use of a rolling average on the instantaneous accelerations squared:

m[t]= 1
w

w/2∑
i=−w/2

(a[t+i+o])2 (1)

Where a[t] is the input acceleration time series, w is a positive integer hyperpa-
rameter for the size of the metric window, and o is an optional integer offset that
can be applied to shift the position of the metric relative to the input signal.

The input signal and metric are illustrated in Figure 2. It can then be compared
against the high (TH) and low (TL) thresholds, whose values are hyperparameters

EDGAR: Embedded Detection of Gunshots by AI in Real-time 7

of the model. A candidate would, for example, only be generated when the signal
dipped below TL and increased above TH .

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Time []

−100

−50

0

50

100

150

Ac
ce

le
ra
tio

n
[g
]

−200

0

200

400

M
et
ric

 v
al
ue

Acceleration data
Candidate election metric
High thre hold (horizontal)
Low thre hold (horizontal)
Candidate hot (vertical)
Candidate non-shot (vertical)

Fig. 2. Example of candidate generation on an ideal input.

Each candidate defines a slice of the input series of a fixed size determined
according to Hypothesis 1 at most. In practice, experiments have shown that similar
or better classification performance can be obtained with a significantly smaller
input vector. A smaller input vector has a major benefit regarding inference-time
performance.

Let N be the number of categories of inputs to classify. The classification
categories can be arbitrarily decided as long as their number of occurrences can be
known for each input series. In the simplest case, a database could be classified as
non-shot or shot, leading to N=2. A more complex example would be classifying
between non-shot, shot with live ammunition, and shot with training ammunition
leading toN=3. Shot types could then be further subdivided according to whether
or not they include a suppressor withN=5. Given a time series including a shooting
sequence with different counts ci with i∈{1,...,N} being the number of occurrences
of each event category. Let its division into candidate slices be X. We can then
define event proportions between the known number of events of a certain category
and the total number of candidates as pi= ci

|X| . A machine-learning-based classifier
fθ(x) with trainable parameters θ can then be run on each candidate input vector,
attempting to classify it into its corresponding category. The resulting predictions
over a given time series can then be aggregated into proportions as follows:

p̂= 1
|X|
∑
x∈X

fθ(x) (2)

The two proportions can then be compared according to a label proportion tech-
nique such as the one described by Tsai et al. [13] to tune the trainable parameters
θ to optimal values. In particular, the related part of the loss function will be:

Lprop=−
N∑
i=1

pilog(p̂i)+
N∑
i=1

pilog(pi) (3)

8 N. Morsa

The second term is an original addition allowing the loss function to converge
to 0 in the case of perfect predictions (i.e., when p̂=p). Without it, the minimal
achievable loss has different values depending on the ratio of the different pro-
portions. This makes the comparison of loss values across different inputs more
meaningful, as well as their aggregation in an average loss over the dataset. Average
loss can be viewed as a smooth metric of model quality, whereas the model accuracy
can only take discrete values, corresponding to a discrete number of counting
errors. This enables us to monitor the model learning evolution more precisely
and employ early stopping techniques based on the average loss on the validation
dataset. Comparative experiments have shown that its addition provides increased
numerical stability and prediction accuracy.

In theory, this formulation does not guarantee the expected assignation of
predicted classes in the edge case where the proportion of some of them are sys-
tematically equal (pi = pj) in every sample of the training set. However, this is
not a practical concern as the natural variability in the number of occurrences of
each class will quickly break any potential tie and allow the model to converge
appropriately. In addition, it is generally easy to obtain samples containing only
non-shot data or a single class of shot data thereby providing some heavily skewed
samples preventing this problem from occurring.

This technique allows us to train a model from our weak aggregated labels.
Note that our proposed method only relies on a particular definition of the loss
function while not imposing any constraints on the type or structure of the model.
A proposed model for embedded usage is described in Section 4.2, but can be
swapped for other types of neural networks or machine learning techniques as long
as it is able to train from such a loss function.

4.1 Minimum Cycle Time

An important factor limiting the performance of the technique, as previously de-
scribed, appears when the metric generates two candidates very close in time. The
model will receive two very similar input vectors, different slices of the same shot,
which it is likely to both classify as being a shot, leading to false positives in the
counting as a typical firearm is only able to shoot one projectile at a time in a cycle.
However, we could leverage the known information of the minimum cycle time of
the weapon to alleviate these false positives. For example, the modern Minimi 5.56
specifications allow a maximum firing rate of 950 rounds per minute (rpm), corre-
sponding to a 63ms average cycle time. Since this burst rate can be slightly exceeded
in exceptional situations and individual cycle times might vary, it is necessary to
incorporate a margin of error over that theoretical number. A value of 40 ms (corre-
sponding to a theoretical cycle rate of 1500 rpm) has been used in our experiments.

While we could consider filtering out candidates at the metric level, at this
step, we do not yet know which candidate the model would usually classify as a
shot. Doing so thus risks removing the candidate closest to the actual shot ignition
in favour of one before or after it. This could lead to non-detections and would
diminish the model’s ability to precisely identify the position of the shot in the time
series. A better approach is to apply this filtering after the network predictions. We

EDGAR: Embedded Detection of Gunshots by AI in Real-time 9

first change successive shot predictions to non-shot if they fall within an exclusion
window of the first prediction. Experimental data (see Section 5.2) show that
this already leads to a significant reduction in error rate. In addition, we can
avoid performing model inference on the ignored predictions leading to an overall
computational performance increase in deployment. A drawback of implementing
this as a post-processing step is that the model has no knowledge of it and remains
penalized during training for the duplicate predictions. This might produce a model
overall unnecessarily "reluctant" to predict shots. In other words, one can assume
that if the model had knowledge of this post-filtering, it would not hesitate to
predict a shot for slightly offset candidates, knowing that it would not be penalized
for duplicate predictions. We can accomplish this during training by implementing
Algorithm1,which corrects the predictionswhile ensuring the duplicates do not take
part in the loss computation. This process is performed in an iterative fashion since
a masked-out shot prediction must not itself create a mask. Redefining Equation 2
to substitute fθ(x) by f ′θ(x) will then prevent backpropagation for the masked-out
predictions. This leads to another significant reduction in error rate in experiments.

Algorithm 1 Remove duplicate predictions in training
Require: ti: timestamp for each candidate xi.
Require: TM : minimum event duration
Require: fθ(x): instance-level classifier with trainable parameters θ,
Require: e: vector corresponding to a non-shot prediction with maximum certainty

ŷi←max1≤k≤Nfθ(x)i,k . Individual category predictions
mi←> .Mask to be computed
for i=1,...,|x| do

ŷ′j←
{

ŷj , if mj

0, if ¬mj

,j∈{1,...,|x|}

if ŷ′i predicts a shot then
updatej←(tj≤ ti)∨(tj>ti+TM),j∈{1,...,|x|}
m←m∧update

end if
end for

f ′θ(x)j←
{
fθ(x)j , if mj

e, if ¬mj

,j∈{1,...,|x|}

return f ′θ(x)

4.2 Model Structure

We have chosen to implement our model as a convolutional neural network (CNN)
inspired by the one described by Santos et al. [12], as described in Figure 3. The
illustratedmodel totals only 33242 parameters, as we look for a small model suitable
for real-time embedded inference.

The original ReLU activations have been changed toReLU6 tomake the network
more suitable for quantization. ReLU6 activation bounds the values, limiting their

10 N. Morsa

Fig. 3. Neural network structure for an input size of 232. Convolutions do not use
strides nor padding. The input size and number of convolution channels depends on the
application and the available computational budget.

possible range. This allows us to use a fixed point representation with more bits
allowed to the fractional part, reducing the quantization artefacts and improving
overall accuracy. Results outside the scope of this paper have shown the difference
in error rate before and after quantization to be reduced both in median and
variance when applying ReLU6 activations.

In testing, the maximum value of 6 has shown to produce the best median
results, whereas ReLU2 has shown the best best-case performance. Since 6 is not a
power of 2, the full [0;6] range does not quantize efficiently, needing up to 3 bits for
the integer part while not making full use of them. However, we speculate that even
when the distribution of activation values uses the full range, only a low percentage
of values actually falls near the bounds. Better performance can thus be achieved
in those cases by only quantizing a 2-bit range around the average, saturating the
outliers but leaving one more bit to be used in the fractional part.

As previously mentioned, this paper focuses on the definition of a loss function
allowing the leveraging of our weak labels independently of the trained model type.
This network serves as a basis proving the viability of the technique on heavily
constrained hardware, and the derivation of the optimal model structure will be
the subject of future research. While our small model and dataset sizes allow for
relatively fast training, we plan on exploring how MINIROCKET [2] could enable
us to further reduce it thereby allowing a faster exploration of the hyperparameter
space. With proper hardware support, spiking neural networks could also be a good
candidate for this type of application.While this work focuses only on instance-level
information, long short-term memory (LSTM) networks could prove a worthwhile
extension to add contextual information to the prediction.

4.3 VAT

Following the good results of Tsai et al. [13], we apply Virtual Adversarial Training
(VAT) as described by Miyato et al. [9]. As advised in the original paper, optimiza-
tion is only done through the perturbation size ε. The regularization coefficient α is

EDGAR: Embedded Detection of Gunshots by AI in Real-time 11

fixed at 1, the finite difference factor ξ is fixed at 10−6, and a single power iteration
is performed (K=1). Contrary to the findings of Laine et al. [6], our experiments
have shown that the best results on our problem are obtained when the VAT loss
is introduced as soon as possible. Thus, we do not include any ramping up to the
VAT loss component.

5 Experiments

5.1 Methodology

We chose to evaluate the technique on two firearms: the FN Minimi® 5.56 and
the FN® M2HB-QCB. The Minimi was selected due both to its availability for
in-depth testing and its reputation of being a notoriously difficult weapon to provide
counting algorithms for due to its very wide number of possible configurations. In
addition, the weapon tends to show low-information signals in some configurations
due to its heavy weight regarding the low-power 5.56 ammunition. The M2 was
selected as a contrast to the Minimi, being on the higher end of ammunition power
and using a completely different action mechanism.

External variables considered for the Minimi were: ammunition type (live/
blank), barrel size (short/long), accessory weight (none/3kg accessories), gas-
operated reloading nozzle size (minimal/nominal/maximal), shooter position
(shoulder/bipod/waist), and firing sequence (semi-automatic, three to six rounds
bursts, 4-1-4-1 bursts, full bursts). Data were acquired in groups of ∼15 rounds.
Non-shot data acquisition includes: dry firing, 1.5m falls onto concrete, opening
and closing the top cover, full reloading manipulation, and user randomly bumping
the weapon. In addition, similar data were also acquired on the Minimi 7.62.

External variables considered for the M2 were: ammunition type (live/blank),
the weight of ammunition belt (minimal belt/100 rounds belt), mount (tripod,
fixed mount, elastic mount, deFNder® teleoperated station), and firing sequence
(manual rearming, single rounds in automatic mode, 3-6 rounds bursts, 4-1-4-1
bursts, full bursts). Data were acquired in groups of ∼10 rounds. Non-shot data
acquisition includes: dry firing, rearming and releasing the mobile parts, opening
and closing the top cover, and user randomly bumping the weapon.

In all cases, input that contains firing incidents (weapon malfunctions) is
rejected. To evaluate the final performance of the algorithm, a validation dataset is
split from the input dataset. To ensure that the validation set captures the behaviour
of the firearm in a wide range of situations, the input series are first sorted into
different bins for each available combination of external variables. The validation
set is then constructed by randomly sampling 10% of the data in each bin, rounding
in favour of the validation set. The composition of the different datasets is shown
in Table 1. Note that the number of non-shot events is not exactly known. This is
firstly because there is no easy and reliable way to provide weak labels for these data,
meaning we have to rely on operator estimations. In addition, a significant number
of non-shot events is also acquired as part normal shooting tests as the operator has
to manipulate the weapon before and after firing sequences for both practical and

12 N. Morsa

safety purposes. These are unaccounted for in our count. Thus, we only provide a
lower bound on the number of non-shot events. A measure of their actual number
can be gained from the total number of candidates generated by the preprocessing.

The real-world distribution between shots and non-shots is also unknown, as
this will heavily depend on the end user and their doctrine. For example, some
users will frequently manipulate the weapon without shooting during training
and/or perform dry firings and safety checks before or after shooting, and transport
it in vehicles generating significant vibrations. Other users will leave the weapon
mostly in storage, and do a minimal number of manipulations around the shooting.
We thus evaluate these separately, by including in the firing samples only the
minimal number of manipulations and safety checks around the shooting (which
also generates unavoidable non-shot candidates due to the inherent behaviour
of the weapon). Other non-shot events are ideally sampled separately so that a
measure of the number of false positives generated during weaponmanipulation can
be given. These will be given in the "non-shot only" rows of the following section.

Table 1. Summary of the number of shots per dataset.

Minimi 5.56 Minimi 7.62 M2
Learning Validation Learning Validation Learning Validation

Live 4461 1785 4707 1800 5263 729
Blank 2130 719 943 348 4238 529

Non-shot
events

>400 >55 >97 >35 >1550 >180

Candidates
(total)

14857 5494 12029 2355 60844 8096

Randomly initialized neural networks are then trained in groups of 20. Op-
timization is done through stochastic gradient descent with fixed 0.9 Nesterov
momentum. The learning rate is reduced by a factor of 2 for every 20 epochs without
improvement larger than 10−5 on the validation loss. A learning phase is stopped if
40 epochs occur without any improvement on the validation loss. Learning occurs
in three phases: an optional pre-training phase on a wider dataset, normal training
on desired firearm’s dataset, and quantization-aware training on the same dataset.
After each phase, the best model is selected according to the lowest number of
validation errors, then the lowest validation loss in case of a tie and proceeds to the
next phase or final evaluation. The resulting network is quantized to eight bits and
runs on the target platform through the TFLite for Microcontrollers framework
accelerated by the CMSIS-NN [5] library.

To iteratively optimize the different hyperparameters, we start by optimizing in-
dividually the preprocessing hyperparameters starting with w from Equation 1, the
associated thresholds TH and TL and the network input vector length. We then pro-
ceed to optimize the learning rate and VAT perturbation size ε. The model can then
be reduced according to the desired performance/computational budget tradeoff by
reducing the number of convolution channels. A second round of fine-tuning can then

EDGAR: Embedded Detection of Gunshots by AI in Real-time 13

be applied. The model shows a single minimal error rate for all hyperparameters,
which can thus be optimized by bisection until the minimum is found. The only ex-
ception isw which has been shown to produce several local minima requiring a more
thorough exploration within the acceptable computational budget. The details of
the hyperparameter survey are outside the scope of this article and will be included
in a future paper. The values used for our experiments are reports in Table 2.

Table 2. Chosen preprocessing and EDGAR hyperparameters.

Hyperparameter Minimi 5.56
(#1)

Minimi 5.56
(future)

M2

|x| 232 232 360
w 5ms 5ms 5ms
TH 30 114 114
TL 10 90 90

Filters 18 18 64
Learning rate 0.002 0.002 0.0032

VAT ε 5 5 5

For the Minimi, pre-training is performed on the 5.56 and 7.62 datasets. For the
M2, pre-training is performed on all three datasets. Acquisition and testing are done
on a custom hardware platform, including a 64MHz Cortex-M4F microcontroller
and a ±200g, 6400Hz MEMS accelerometer.

Due to technical limitations of our current data collection setup, the extrac-
tion of samples currently requires the intervention of a trained technician on the
shooting range making it significantly more expensive than autonomous counting
operation. As a result, we have chosen to test the final performance of our method
in this fashion pending the acquisition of truly independent test datasets.

As detailed in section 2, no ML-based approach or device is currently publicly
available for our problem. While the domain of time series classification is well
studied, as described in section 3 the lack of labels for individual shots prevents
us from using supervised techniques. As a baseline, we include for comparison a
method of unsupervised clustering on the candidates based on deep learning: Deep
Temporal Clustering (DTC) as described by Madiraju et al. [8]. Hyperparameters
have been fine-tuned following a similar procedure and are reported in Table 3,
and pre-training is also applied.

For the human baseline, we compare our technique with FN SmartCore® shot
counters, which share the same hardware and sensor, running algorithms generated
by human firearm experts. These work by first detecting discrete shocks in the input
signal. They then attempt to interpret groups of shocks as sub-events of a firing
cycle (such as feeding, locking, firing or rearming) by considering their relative
energies, timings, directions and the duration of "calm zones" in-between [4]. These
devices have been commercially available since 2012 and are available for a wide
range of machine guns and assault rifles.

14 N. Morsa

Table 3. Chosen preprocessing and DTC hyperparameters.

Hyperparameter Minimi 5.56 M2
|x| 232 360
w 5ms 5ms
TH 126 114
TL 119 90

Distance metric CID CID
α 17.5 1
γ 90 1

Batch size 64 64
Pool size 4 8
Kernel size 96 10
Filters 50 50

5.2 Performance

In this section, we examine the performance of our technique on both the validation
datasets and real-world testing. Since we are dealing with weak labels, we are
unable to verify model predictions at the instance level. Models are evaluated
through their error rate, which we define as the sum of the counting differences
(category by category) for all time series, divided by the real total count. More
formally, we define the error rate E as:

E=
∑
i,j |ĉij−cij |∑

i,jcij
(4)

where cij is the count of shots (or, if applicable, other countable events) of type i
for time series j and ĉij is the one estimated by the model.

A model that always predicts non-shots will have an error rate of 100% by this
definition. In practical applications, non-shots constitute the majority of candidates
(see Table 1). In these conditions, a model that always predicts shots will have an
error rate over 100% (119% for the Minimi 5.56 and 544% for the M2 datasets).
We can expect applications with a larger class imbalance between non-shots and
shots to show a higher base error rate due to the increased number of false positives,
denoting a harder problem for shot counters. Note that we could also define the
error rate compared to the total number of candidates, resulting in smaller error
rates but with identical relative levels for a given dataset.

Another interesting baseline is a classifier that predicts shots randomly accord-
ing to the relative frequency of shots to non-shots in the learning set, which would
be the most trivial exploitation of the weak labels over a random predictor. While
such a model would report a fairly accurate total count in identical benchmark
situations, it would vary wildly on individual inputs. This is detected in the error
rate: the weighed random model obtains E = 31.5% for the Minimi 5.56 and
E=37.5% for the M2. Note that since the class imbalance depends on the external
conditions and usage, practical applications or different datasets are likely to have a
different class distribution which would make such a model increasingly inaccurate.

EDGAR: Embedded Detection of Gunshots by AI in Real-time 15

Such a model would also produce a large number of false positives during non-shot
usage, which is highly undesirable.

In the experimental results of this section, we also mention (in smaller print)
the raw counting result, which is the metric eventually used by the armourer and
allows for some desirable error compensation. This also lets the reader know how
many real shots an error rate is based on.

Minimi 5.56 Table 4 compares our method with DTC and the human-generated
algorithm. Real-world testing (model #1) was performed in similar conditions but
with different weapons and sensors. Since then, we have found better values for
hyperparameters TH and TL, which significantly improved performance, and report
the results of this model as "future" as it has not yet undergone real-world testing.
The machine-learning model runs in 65ms/inference on our testing platform and
the preprocessing runs in 22µs/sample. It uses 41kB of program memory and has
peak usage of 11kB of RAM.

Table 4. Error rates and reported count of Minimi 5.56 algorithms on the validation set
and during real-world testing, broken down by ammunition type.

Human EDGAR DTC
valid. real valid.

(model #1)
real

(model #1)
valid.

(future) valid.

Live 2.07% 0.41% 0.17% 2% 0% 9.2%
1752/1785 1205/1210 1788/1785 404/400 1785/1785 1841/1785

Blank 0.69% 0.74% 0.28% 0.75% 0% 11.4%
714/719 1201/1210 719/719 403/400 719/719 795/719

Total 1.68% 0.58% 0.20% 1.37% 0% 9.82%
Non-shot only
(false positives)

30/>55 0/>100 0/>55 6/>100 0/>55 34/>55

We observe that the model significantly outperforms not only the unsupervised
baseline but also the human-generated algorithm on the validation set and that the
"future" model is even able to obtain a perfect score. The expert model shows better
performance in real-world testing on a previously unseen weapon and sensor. We
believe this is due to the validation set over-representing extreme cases compared
to the nominal-case real-world test. Our machine learning model shows a slightly
degraded error rate, falling behind the expert model, but still remains well below
the threshold for commercial viability (E<5%). We assume that this difference
is mainly due to an input distribution shift to which the machine learning model
is sensitive. In particular, we discovered that our dataset for this weapon did not
accurately reproduce the moment at which our accelerometer starts sampling in
practical situations, leading to a slight difference in inputs for the first shot of a burst.

In addition, some false positives were detected. This is not a surprising result
as this weapon is notoriously difficult to filter out false positives for, as attested by
the result of the expert algorithm on the validation set. We believe that increasing
their representation in the learning set would alleviate this issue.

16 N. Morsa

M2 The M2 weapon platform provides a special firing mode allowing the user to
manually control the weapon cycle, ensuring only single shots are possible. This
functionality fundamentally alters the weapon cycle and, so far, human-generated
algorithms have not been able to support it without suffering from a significant
number of false-positives. These are currently completely ignored by existing
shot counters. With this experiment, we have attempted to solve this problem by
training and testing the neural network on the whole dataset, including 20% of
samples using this functionality. Results are compared in Table 5. In addition, the
M2 platform offered us the unique possibility of mounting two counters in parallel,
thus providing directly comparable results.

The machine-learning model runs in 87ms/inference on our testing platform
and the preprocessing runs in 22µs/sample. It uses 52kB of program memory and
has peak usage of 14kB of RAM.

Table 5. Error rates and reported count of M2 algorithms on the validation set and
during real-world testing, broken down by ammunition and mount types.

Full-auto only Full-auto + Manual rearm

Fixation Ammun.
Human EDGAR DTC Human EDGAR DTC

valid. real valid. real valid. valid. real valid. real valid.

Tripod
live 0% 0% 0% 12% 23% 16% 20% 1% 10% 25%

160/160 40/40 160/160 35/40 153/160 160/190 40/50 188/190 45/50 193/190

blank 0% 0% 0% 20% 38% 20% 18% 2% 22% 62%
160/160 40/40 160/160 32/40 159/160 160/200 40/49 195/200 38/49 262/200

Fixed
live 0% 0% 5% 0% 58% 13% 20% 4% 4% 56%

209/209 40/40 203/209 40/40 275/209 209/239 40/50 229/239 48/50 318/239

blank 0% 0% 2% 17% 36% 24% 20% 1% 26% 41%
130/130 40/40 131/130 33/40 101/130 130/170 40/50 169/170 37/50 159/170

Elastic
live 0% 0% 1% 0% 26% 18% 20% 1% 10% 26%

140/140 40/40 139/140 40/40 160/140 140/170 40/50 169/170 45/50 185/170

blank 0% 6% 6% 7% 39% 19% 26% 5% 10% 41%
129/129 75/80 121/129 37/40 157/129 129/159 75/101 151/159 91/101 182/159

deFNder live 0% 0% 0% 0% 30% 6% 22% 0% 8% 42%
110/110 39/39 110/110 40/40 103/110 122/130 39/50 130/130 46/50 144/130

Average 0% 1% 2% 8% 36% 16% 21% 2% 13% 42%
Non-shot only
(false positives)

0
>110

0
>80

0
>180

0
>80

314
>180

0
>180

0
>80

0
>180

0
>80

314
>180

Following the Minimi results, a greater emphasis was put on including non-shot
data in the learning set. This seems to have proven successful as no false-positives
have been detected during transport, setup, normal manipulations and over 80
supplementary manipulations and dry firings.

On the validation set, the human-generated algorithm obtains a perfect score on
the partial dataset but rises to a 16% error rate when including manually rearmed
shots. The EDGAR model shows satisfactory performance (E<5%) on the partial
and full datasets by obtaining a stable 2% error rate on both.

EDGAR: Embedded Detection of Gunshots by AI in Real-time 17

Due to the larger class imbalance of this dataset causing it to report many more
false positives, the unsupervised baseline performs very poorly on this dataset and
does not manage to beat the previously described weighed random model. This
interpretation is supported by the non-shot data on which the DTC model reports
(multiple) shots for every weapon manipulation, which would be unacceptable for
practical use. We thus show a large improvement from this baseline.

Real-world testing shows performance falling for both algorithms, especially the
machine-learning model rising to 8%. Results on the ammunition discrimination
problem outside the scope of this paper suggest that this is at least partly due
to a distribution shift in the input, which affects the machine learning model
more significantly. Due to equipment availability constraints, only one weapon
and three sensors were used to construct the dataset, while testing was done on
brand-new, unseen weapons and sensors. Despite this, when including manually
rearmed shots, the machine-learning model still shows overall better performance
than the human-generated one.

We assume that supplementary testing on a more diverse batch of weapons
and sensors could significantly improve the real-world performance of the model.

Base +Pre-Train +Zero-Loss +ReLU6 +Post-Filter +Learned P-F +VAT
0

1

2

3

4

5

M
in

im
i 5

.5
6

er
ro

r r
at

e
[%

]

0

10

20

30

40

50

M
2

er
ro

r r
at

e
[%

]

Minimi 5.56
Minimi 5.56 (future)
M2

Fig. 4. Effects of incremental improvements. Each box represents the error rate of 20
randomly initialized models on the validation set.

Breakdown of Performance Improvements In Figure 4, we compare the
performance of incremental improvements to the base method as discussed in
Section 4. We start with the base technique. As we move to the right we successively
add improvements, conserving all previously enabled ones. Hyperparameters are
identical to those used to obtain the experimental results in the previous sections.
Some models fail to converge at all, especially when zero-loss is disabled; these are
treated as 100% error rate and explain the high maximums of some boxes.

We first enable pre-training, add our second term of Equation 3 in "Zero-Loss,"
and replace ReLU activations with ReLU6 (see Section 4.2). We then enable simple
post-filtering (see Section 4.1), add our implementation of Algorithm 1 in "Learned
P-F," and finally enable VAT (see Section 4.3).

18 N. Morsa

6 Conclusion and future work

In this study, we have presented an approach that successfully learns an instance-
level shot classifier from a weakly-labelled dataset, which we believe opens the way
for newmachine-learning applications.We showed that it significantly improves pre-
dictions from the unsupervised baseline by successfully exploiting the information
from weak labels. We also showed that it outperforms human-generated algorithms
in most offline testing, reach commercially acceptable levels of performance in
real-world testing and are able to solve previously unanswered problems. We expect
this to save several weeks of development time per product and enable increased
customisation to specific platforms thus further increasing performance. Finally,
we showed that our technique could yield models giving this level of performance
in real-time on microcontrollers while using less than 14kB of RAM and 87ms per
inference. In the future, we aim to bring real-world performance closer to the one
obtained on offline benchmarks by improving the data collection technique and
taking systematic measures against input distribution shifts. Outside the scope
of this paper, our technique has also shown consistent better-than-human perfor-
mance on the ammunition discrimination problem. It is already being deployed for
that purpose in commercial applications. We hope to bring to light these results
and the associate technique improvements in a further study.

Acknowledgements I would like to thank my colleague Louis Huggenberger for
his continuous help in data acquisition. I would like to thank my thesis supervisors
Hugues Libotte and Louis Wehenkel for their precious advice and suggestions.

References

1. Calhoun, R.B., Lamkin, S., Rodgers, D.: Systems and methods involving creation
and/or utilization of image mosaic in classification of acoustic events (Sep 2019)

2. Dempster, A., Schmidt, D.F., Webb, G.I.: MINIROCKET: A Very Fast (Almost)
Deterministic Transform for Time Series Classification. In: Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining. pp. 248–257
(Aug 2021). https://doi.org/10.1145/3447548.3467231

3. FN Herstal, S.A.: Small Arms Management: Break free of paper chains with a smart,
digital armory [White paper] (Sep 2020)

4. Joannes, R., Delcourt, J.P., Heins, P.: Device for detecting and counting shots fired
by an automatic or semi-automatic firearm, and firearm equipped with such a device
(Mar 2010)

5. Lai, L., Suda, N., Chandra, V.: CMSIS-NN: Efficient Neural Network
Kernels for Arm Cortex-M CPUs. arXiv:1801.06601 [cs] (Jan 2018).
https://doi.org/10.48550/arXiv.1801.06601

6. Laine, S., Aila, T.: Temporal Ensembling for Semi-Supervised Learning.
arXiv:1610.02242 [cs] (Mar 2017). https://doi.org/10.48550/arXiv.1610.02242

7. Loeffler, C.E.: Detecting gunshots using wearable accelerometers. PLOS ONE 9(9),
1–6 (Sep 2014). https://doi.org/10.1371/journal.pone.0106664

https://doi.org/10.1145/3447548.3467231
https://doi.org/10.48550/arXiv.1801.06601
https://doi.org/10.48550/arXiv.1610.02242
https://doi.org/10.1371/journal.pone.0106664

EDGAR: Embedded Detection of Gunshots by AI in Real-time 19

8. Madiraju, N.S., Sadat, S.M., Fisher, D., Karimabadi, H.: Deep Temporal Clustering
: Fully Unsupervised Learning of Time-Domain Features. arXiv:1802.01059 [cs.LG]
(Feb 2018). https://doi.org/10.48550/arXiv.1802.01059

9. Miyato, T., Maeda, S.i., Koyama, M., Ishii, S.: Virtual Adversarial Training: A Reg-
ularization Method for Supervised and Semi-Supervised Learning. arXiv:1704.03976
[cs, stat] (Jun 2018). https://doi.org/10.48550/arXiv.1704.03976

10. Putra, I.P.E.S., Brusey, J., Gaura, E., Vesilo, R.: An Event-Triggered Machine
Learning Approach for Accelerometer-Based Fall Detection. Sensors 18, 20 (Dec
2017). https://doi.org/10.3390/s18010020

11. Reese, K.A.: A Situational-Awareness System for Networked Infantry Including
an Accelerometer-Based Shot-Identification Algorithm for Direct-Fire Weapons.
Master’s thesis, Naval Postgraduate School (Sep 2016)

12. Santos, G.L., Endo, P.T., de Carvalho Monteiro, K.H., da Silva Rocha, E., Silva, I.,
Lynn, T.: Accelerometer-Based Human Fall Detection Using Convolutional Neural
Networks. Sensors 19, 1644 (Apr 2019). https://doi.org/10.3390/s19071644

13. Tsai, K.H., Lin, H.T.: Learning from label proportions with consistency regularization.
CoRR abs/1910.13188 (Oct 2019). https://doi.org/10.48550/arXiv.1910.13188

14. Ufer, R., Brinkley, K.L.: Self calibrating weapon shot counter (Sep 2014)
15. Weiss, I., Hyden, I., Ami, M.: Device system and method for projectile launcher

operation monitoring (Jul 2021)

https://doi.org/10.48550/arXiv.1802.01059
https://doi.org/10.48550/arXiv.1704.03976
https://doi.org/10.3390/s18010020
https://doi.org/10.3390/s19071644
https://doi.org/10.48550/arXiv.1910.13188

	EDGAR: Embedded Detection of Gunshots by AI in Real-time

