Skip to main content

A Reliable Service Function Chain Orchestration Method Based on Federated Reinforcement Learning

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2022)

Abstract

The novel cloud-edge collaborative computing architecture can provide more efficient and intelligent services close to users. Reliable service function chain orchestration among datacenters is critical to ensuring computing efficiency. In this study, a service orchestration model is proposed to improve the reliability while reducing cost. The solution is a federated reinforcement learning framework that shares decision-making experiences to obtain reliable and effective service orchestration results between different datacenter environments. The simulation results demonstrate that the proposed orchestration method reaches convergence faster and has a significant performance in terms of improving service reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tai, Y.C., Yen, L.H.: Network service embedding in multiple edge systems: profit maximization by federation. In: IEEE International Conference on Communications (ICC), pp. 1ā€“6. IEEE (2021)

    Google Scholar 

  2. Jia, Y., Wu, C., Li, Z., et al.: Online scaling of NFV service chains across geo-distributed datacenters. IEEE/ACM Trans. Netw. 26(2), 699ā€“710 (2018). https://doi.org/10.1109/tnet.2018.2800400

    Article  Google Scholar 

  3. Qing, H., Weifei, Z., Julong, L.: Virtual network protection strategy to ensure the reliability of SFC in NFV. In: Proceedings of the 6th International Conference on Information Engineering, pp. 1ā€“5. ACM, New York (2017)

    Google Scholar 

  4. Wang, S., Zhou, A., Yang, M., et al.: Service composition in cyber-physical-social systems. IEEE Trans. Emerg. Topics Comput. 8(1), 82ā€“91 (2020). https://doi.org/10.1109/TETC.2017.2675479

    Article  Google Scholar 

  5. Qu, L., Assi, C., Khabbaz, M.J., et al.: Reliability-aware service function chaining with function decomposition and multipath routing. IEEE Trans. Netw. Serv. Manag. 17(2), 835ā€“848 (2020)

    Article  Google Scholar 

  6. Troia, S., Alvizu, R., Maier, G.: Reinforcement learning for service function chain reconfiguration in NFV-SDN metro-core optical networks. IEEE Access 7, 167944ā€“167957 (2019). https://doi.org/10.1109/ACCESS.2019.2953498

    Article  Google Scholar 

  7. Shah, H.A., Zhao, L.: Multiagent deep-reinforcement-learning-based virtual resource allocation through network function virtualization in internet of things. IEEE Internet Things J. 8(5), 3066ā€“3074 (2020). https://doi.org/10.1109/JIOT.2020.3023111

    Article  Google Scholar 

  8. Liu, X., Yu, J., Feng, Z., et al.: Multi-agent reinforcement learning for resource allocation in IoT networks with edge computing. China Commun. 17(9), 220ā€“236 (2020). https://doi.org/10.23919/JCC.2020.09.017

  9. Chen, H.M., Chen, S.Y., Wang, S.K., et al.: Designing a reinforcement learning approach for the NFV orchestration system with energy saving optimization. In 2022 8th International Conference on Applied System Innovation (ICASI), pp. 98ā€“10. IEEE (2022)

    Google Scholar 

  10. Huang, H., Zeng, C., Zhao, Y., et al.: Scalable orchestration of service function chains in NFV-enabled networks: a federated reinforcement learning approach. IEEE J. Sel. Areas Commun. 39(8), 2558ā€“2571 (2021). https://doi.org/10.1109/JSAC.2021.3087227

    Article  Google Scholar 

  11. Zhang, P., Wang, C., Jiang, C., et al.: Deep reinforcement learning assisted federated learning algorithm for data management of IIoT. IEEE Trans. Industr. Inform. 17(12), 8475ā€“8484 (2021). https://doi.org/10.1109/TII.2021.3064351

    Article  Google Scholar 

  12. Nguyen, D.C., Ding, M., Pathirana, P.N., et al.: Federated learning for internet of things: a comprehensive survey. IEEE Commun. Surv. Tutor. 23(3), 1622ā€“1658 (2021). https://doi.org/10.1109/JIOT.2022.3170449

    Article  Google Scholar 

  13. Dieye, M., Ahvar, S., Sahoo, J., et al.: CPVNF: cost-efficient proactive VNF placement and chaining for value-added services in content delivery networks. IEEE Trans. Netw. Service Manag. 15(2), 774ā€“786 (2018). https://doi.org/10.1109/TNSM.2018.2815986

    Article  Google Scholar 

  14. Sang, I.K., Kim, H.S.: A VNF placement method based on VNF characteristics. In: International Conference on Information Networking, Jeju Island, pp. 864ā€“869. IEEE (2021)

    Google Scholar 

  15. Yang, Z., Chen, B., Dai, M., et al.: VNF placement for service chaining in IP over WDM networks. In: Asia Communications and Photonics Conference, Hangzhou, pp. 1ā€“3. IEEE (2018)

    Google Scholar 

  16. Kar, B., Wu, E.H.K., Lin, Y.D., et al.: Energy cost optimization in dynamic placement of virtualized network function chains. IEEE Trans. Netw. Service Manag. 15(1), 372ā€“386 (2018). https://doi.org/10.1109/TNSM.2017.2782370

    Article  Google Scholar 

  17. Varasteh, A., Madiwalar, B., Bemten, A.V., et al.: Holu: power-aware and delay-constrained VNF placement and chaining. IEEE Trans. Netw. Service Manag. 18(2), 1524ā€“1539 (2021). https://doi.org/10.1109/TNSM.2021.3055693

    Article  Google Scholar 

  18. Quang, P., Hadjadj-Aoul, Y., Outtagarts, A.: On using deep reinforcement learning for VNF forwarding graphs placement. In: 11th International Conference on Network of the Future, Bordeaux, pp. 126ā€“128. IEEE (2020)

    Google Scholar 

  19. Pei, J., Hong, P., Pan, M., et al.: Optimal VNF placement via deep reinforcement learning in SDN/NFV-enabled networks. IEEE J. Sel. Areas Commun. 38(2), 263ā€“278 (2020). https://doi.org/10.1109/JSAC.2019.2959181

    Article  Google Scholar 

  20. Rui, L., Chen, X., Gao, Z., et al.: Petri net-based reliability assessment and migration optimization strategy of SFC. IEEE Trans. Netw. Service Manag. 18(1), 167ā€“181 (2020). https://doi.org/10.1109/tnsm.2020.3045705

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwen Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, Z. et al. (2022). A Reliable Service Function Chain Orchestration Method Based on Federated Reinforcement Learning. In: Gao, H., Wang, X., Wei, W., Dagiuklas, T. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 460 . Springer, Cham. https://doi.org/10.1007/978-3-031-24383-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24383-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24382-0

  • Online ISBN: 978-3-031-24383-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics