Skip to main content

Effective Blockchain-Based Asynchronous Federated Learning for Edge-Computing

  • Conference paper
  • First Online:
  • 659 Accesses

Abstract

Since massive data are generated at the network’s edge, the Internet of Things devices can exploit edge computing and federated learning to train artificial intelligence (AI) models while protecting data privacy. However, heterogeneous devices lead to low efficiency and single-point-of-failure. Moreover, malicious nodes may affect training accuracy. Therefore, we propose FedLyra, an effective blockchain-based asynchronous federated learning architecture, to improve the efficiency of aggregation and resist malicious nodes in a trusted and decentralized manner. We then propose a reputation mechanism that combines historical behaviors and the quality of local updates to resist disagreements and adversaries. With the help of the reputation mechanism, we propose a council-based decentralized aggregation mechanism to exclude malicious nodes. Experiments show that FedLyra can resist malicious nodes and ensure the accuracy of training results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The CNN network trained on Cifar has 6 layer with the following structure: \(3 \times 3 \times 64/128/256/512\) Convolutional \(\rightarrow \) \(2 \times 2\) MaxPool \(\rightarrow \) 2048 Fully connected \(\rightarrow \) SoftMax.

  2. 2.

    The CNN network trained on Fashion-MNIST has 5 layer with the following structure: \(3 \times 3 \times 16/32/64\) Convolutional \(\rightarrow \) \(2 \times 2\) MaxPool \(\rightarrow \) 576 Fully connected \(\rightarrow \) SoftMax.

References

  1. Ali, M.S., Vecchio, M., Pincheira, M., Dolui, K., Antonelli, F., Rehmani, M.H.: Applications of blockchains in the Internet of Things: a comprehensive survey. IEEE Commun. Surv. Tutor. 21(2), 1676–1717 (2019)

    Article  Google Scholar 

  2. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Seltzer, M.I., Leach, P.J. (eds.) Proceedings of the Third USENIX Symposium on Operating Systems Design and Implementation (OSDI), New Orleans, Louisiana, USA, 22–25 February 1999, pp. 173–186. USENIX Association (1999)

    Google Scholar 

  3. Chen, M., Mao, B., Ma, T.: FedSA: a staleness-aware asynchronous Federated Learning algorithm with non-IID data. Future Gener. Comput. Syst. 120, 1–12 (2021)

    Article  Google Scholar 

  4. Chen, Y., Ning, Y., Slawski, M., Rangwala, H.: Asynchronous online federated learning for edge devices with non-IID data. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 15–24 (2020)

    Google Scholar 

  5. Dong, S., Wang, P., Abbas, K.: A survey on deep learning and its applications. Comput. Sci. Rev. 40, 100379 (2021)

    Article  MATH  Google Scholar 

  6. Feng, L., Zhao, Y., Guo, S., Qiu, X., Li, W., Yu, P.: Blockchain-based asynchronous federated learning for Internet of Things. IEEE Trans. Comput. 1 (2021)

    Google Scholar 

  7. Jin, H., Yan, N., Mortazavi, M.: Simulating aggregation algorithms for empirical verification of resilient and adaptive federated learning. In: 2020 IEEE/ACM International Conference on Big Data Computing, Applications and Technologies (BDCAT), pp. 124–133 (2020)

    Google Scholar 

  8. Kang, J., Xiong, Z., Niyato, D., Xie, S., Zhang, J.: Incentive mechanism for reliable federated learning: a joint optimization approach to combining reputation and contract theory. IEEE Internet Things J. 6(6), 10700–10714 (2019)

    Article  Google Scholar 

  9. Khan, L.U., et al.: Federated learning for edge networks: resource optimization and incentive mechanism. IEEE Commun. Mag. 58(10), 88–93 (2020)

    Article  Google Scholar 

  10. Kim, H., Park, J., Bennis, M., Kim, S.L.: Blockchained on-device federated learning. IEEE Commun. Lett. 24(6), 1279–1283 (2020)

    Article  Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015). http://arxiv.org/abs/1412.6980

  12. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  13. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: challenges, methods, and future directions. IEEE Sig. Process. Mag. 37(3), 50–60 (2020)

    Article  Google Scholar 

  14. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. In: Proceedings of Machine Learning and Systems 2020, MLSys 2020, Austin, TX, USA, 2–4 March 2020. mlsys.org (2020)

    Google Scholar 

  15. Li, Y., Chen, C., Liu, N., Huang, H., Zheng, Z., Yan, Q.: A blockchain-based decentralized federated learning framework with committee consensus. IEEE Netw. 35(1), 234–241 (2021)

    Article  Google Scholar 

  16. Liu, Y., Qu, Y., Xu, C., Hao, Z., Gu, B.: Blockchain-enabled asynchronous federated learning in edge computing. Sensors 21(10), 3335 (2021)

    Article  Google Scholar 

  17. Mao, Y., You, C., Zhang, J., Huang, K., Letaief, K.B.: A survey on mobile edge computing: the communication perspective. IEEE Commun. Surv. Tutor. 19(4), 2322–2358 (2017)

    Article  Google Scholar 

  18. McMahan, B., Moore, E., Ramage, D., Hampson, S., Aguera y Arcas, B.: Communication-efficient learning of deep networks from decentralized data. In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 54, pp. 1273–1282. PMLR, 20–22 April 2017

    Google Scholar 

  19. Reisizadeh, A., Mokhtari, A., Hassani, H., Jadbabaie, A., Pedarsani, R.: FedPAQ: a communication-efficient federated learning method with periodic averaging and quantization. In: Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 108, pp. 2021–2031. PMLR, 26–28 August 2020

    Google Scholar 

  20. Tak, A., Cherkaoui, S.: Federated edge learning: design issues and challenges. IEEE Netw. 35(2), 252–258 (2021)

    Article  Google Scholar 

  21. Wang, X., Han, Y., Wang, C., Zhao, Q., Chen, X., Chen, M.: In-Edge AI: intelligentizing mobile edge computing, caching and communication by federated learning. IEEE Netw. 33(5), 156–165 (2019)

    Article  Google Scholar 

  22. Wu, M., Wang, K., Cai, X., Guo, S., Guo, M., Rong, C.: A comprehensive survey of blockchain: from theory to IoT applications and beyond. IEEE Internet Things J. 6(5), 8114–8154 (2019)

    Article  Google Scholar 

  23. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. CoRR abs/1708.07747 (2017). http://arxiv.org/abs/1708.07747

  24. Xie, C., Koyejo, S., Gupta, I.: Asynchronous federated optimization. CoRR abs/1903.03934 (2019). http://arxiv.org/abs/1903.03934

  25. Yaga, D., Mell, P., Roby, N., Scarfone, K.: Blockchain technology overview. arXiv preprint arXiv:1906.11078, October 2018

  26. Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., Zhang, J.: Edge intelligence: paving the last mile of artificial intelligence with edge computing. Proc. IEEE 107(8), 1738–1762 (2019)

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by National Natural Science Foundation of China (62072049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huangqi Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, Z., Li, H., Lin, Y., Chai, Z., Yang, Y., Rui, L. (2022). Effective Blockchain-Based Asynchronous Federated Learning for Edge-Computing. In: Gao, H., Wang, X., Wei, W., Dagiuklas, T. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 460 . Springer, Cham. https://doi.org/10.1007/978-3-031-24383-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24383-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24382-0

  • Online ISBN: 978-3-031-24383-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics