Skip to main content

Research on Depth-Adaptive Dual-Arm Collaborative Grasping Method

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2022)

Abstract

Among the existing dual-arm cooperative grasping methods, the dual-arm cooperative grasping method based on RGB camera is the mainstream intelligent method. However, these methods often require predefined depth, difficult to adapt to changes in depth without modification. To solve this problem, this paper proposes a dual-arm cooperative grasping method based on RGB camera, which is suitable for scenes with variable depth, to increase the adaptability of dual-arm cooperation. Firstly, we build a mathematical model based on RGB camera, and use the markers attached to the target to obtain the depth information of the target. Then the 3D pose of the target under the robot world coordinate system is obtained by combining the depth information and pixel information. Finally, the task is assigned to the left and right robotic arms, and the target grabbing task is realized based on the main-auxiliary control. The proposed approach is validated in multiple experiments on a Baxter robot under different conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bai, W., et al.: Dual-arm coordinated manipulation for object twisting with human intelligence. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 902–908. IEEE (2021)

    Google Scholar 

  2. Cai, J., Cheng, H., Zhang, Z., Su, J.: Metagrasp: data efficient grasping by affordance interpreter network. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 4960–4966. IEEE (2019)

    Google Scholar 

  3. Du, G., Wang, K., Lian, S., Zhao, K.: Vision-based robotic grasping from object localization, object pose estimation to grasp estimation for parallel grippers: a review. Artif. Intell. Rev. 54(3), 1677–1734 (2021)

    Article  Google Scholar 

  4. Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using mixed integer linear programming. Pattern Recogn. 51, 481–491 (2016)

    Article  Google Scholar 

  5. Griffin, B.A., Corso, J.J.: Learning object depth from camera motion and video object segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 295–312. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_18

    Chapter  Google Scholar 

  6. Ibarguren, A., Eimontaite, I., Outón, J.L., Fletcher, S.: Dual arm co-manipulation architecture with enhanced human-robot communication for large part manipulation. Sensors 20(21), 6151 (2020)

    Article  Google Scholar 

  7. Jocher, G., et al.: ultralytics/yolov5: v5. 0-yolov5-p6 1280 models aws supervise. ly and youtube integrations. Zenodo 11 (2021)

    Google Scholar 

  8. Laghi, M., et al.: Shared-autonomy control for intuitive bimanual tele-manipulation. In: 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), pp. 1–9. IEEE (2018)

    Google Scholar 

  9. Liang, J., Mahler, J., Laskey, M., Li, P., Goldberg, K.: Using DVRK teleoperation to facilitate deep learning of automation tasks for an industrial robot. In: 2017 13th IEEE Conference on Automation Science and Engineering (CASE), pp. 1–8. IEEE (2017)

    Google Scholar 

  10. Lipton, J.I., Fay, A.J., Rus, D.: Baxter’s homunculus: virtual reality spaces for teleoperation in manufacturing. IEEE Robot. Autom. Lett. 3(1), 179–186 (2017)

    Article  Google Scholar 

  11. Liu, D., et al.: A novel and efficient distance detection based on monocular images for grasp and handover. In: Gao, H., Wang, X. (eds.) CollaborateCom 2021. LNICST, vol. 406, pp. 642–658. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92635-9_37

    Chapter  Google Scholar 

  12. Lundell, J., Verdoja, F., Kyrki, V.: Beyond top-grasps through scene completion. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 545–551. IEEE (2020)

    Google Scholar 

  13. Medjram, S., Brethe, J.F., Benali, K.: Markerless vision-based one cardboard box grasping using dual arm robot. Multimedia Tools Appl. 79(31), 22617–22633 (2020)

    Article  Google Scholar 

  14. Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recogn. 73, 158–171 (2018)

    Article  Google Scholar 

  15. Ott, C., Nakamura, Y.: Employing wave variables for coordinated control of robots with distributed control architecture. In: 2008 IEEE International Conference on Robotics and Automation, pp. 575–582. IEEE (2008)

    Google Scholar 

  16. Punlum, V., Srisertpol, J., Khaengkam, S.: The application of double arms scara robot for deburring of PCB support plate. In: 2017 International Conference on Circuits, Devices and Systems (ICCDS), pp. 1–5. IEEE (2017)

    Google Scholar 

  17. Rastegarpanah, A., Marturi, N., Stolkin, R.: Autonomous vision-guided bi-manual grasping and manipulation. In: 2017 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO), pp. 1–7. IEEE (2017)

    Google Scholar 

  18. Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image Vis. Comput. 76, 38–47 (2018)

    Article  Google Scholar 

  19. SepúLveda, D., Fernández, R., Navas, E., Armada, M., González-De-Santos, P.: Robotic aubergine harvesting using dual-arm manipulation. IEEE Access 8, 121889–121904 (2020)

    Article  Google Scholar 

  20. Silvério, J., Clivaz, G., Calinon, S.: A laser-based dual-arm system for precise control of collaborative robots. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 9183–9189. IEEE (2021)

    Google Scholar 

  21. Smith, C., et al.: Dual arm manipulation-a survey. Robot. Auton. Syst. 60(10), 1340–1353 (2012)

    Article  Google Scholar 

  22. Tung, A., et al.: Learning multi-arm manipulation through collaborative teleoperation. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 9212–9219. IEEE (2021)

    Google Scholar 

  23. Wu, Q., Li, M., Qi, X., Hu, Y., Li, B., Zhang, J.: Coordinated control of a dual-arm robot for surgical instrument sorting tasks. Robot. Auton. Syst. 112, 1–12 (2019)

    Article  Google Scholar 

  24. Yang, Y., Liu, Y., Liang, H., Lou, X., Choi, C.: Attribute-based robotic grasping with one-grasp adaptation. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 6357–6363. IEEE (2021)

    Google Scholar 

  25. Yu, X., Zhang, S., Sun, L., Wang, Y., Xue, C., Li, B.: Cooperative control of dual-arm robots in different human-robot collaborative tasks. Assem. Autom. 40(1), 95–104 (2019)

    Article  Google Scholar 

  26. Zahavi, A., Haeri, S.N., Liyanage, D.C., Tamre, M.: A dual-arm robot for collaborative vision-based object classification. In: 2020 17th Biennial Baltic Electronics Conference (BEC), pp. 1–5. IEEE (2020)

    Google Scholar 

  27. Zhong, F., Wang, Y., Wang, Z., Liu, Y.H.: Dual-arm robotic needle insertion with active tissue deformation for autonomous suturing. IEEE Robot. Autom. Lett. 4(3), 2669–2676 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Project of NSFC (Grant No. U1908214), Special Project of Central Government Guiding Local Science and Technology Development (Grant No. 2021JH6/10500140), the Program for Innovative Research Team in University of Liaoning Province (LT2020015), the Support Plan for Key Field Innovation Team of Dalian (2021RT06), the Science and Technology Innovation Fund of Dalian (Grant No. 2020JJ25CY001), the Support Plan for Leading Innovation Team of Dalian University (Grant No. XLJ202010) and Dalian University Scientific Research Platform Project (No. 202101YB03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongsheng Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H., Yi, P., Liu, R., Dong, J., Zhang, Q., Zhou, D. (2022). Research on Depth-Adaptive Dual-Arm Collaborative Grasping Method. In: Gao, H., Wang, X., Wei, W., Dagiuklas, T. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 461. Springer, Cham. https://doi.org/10.1007/978-3-031-24386-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24386-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24385-1

  • Online ISBN: 978-3-031-24386-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics