Skip to main content

Using DBSCAN-RF Algorithm and Multi-source Features to Model Deep Convection in Hubei, China

  • Conference paper
  • First Online:
Spatial Data and Intelligence (SpatialDI 2022)

Abstract

The realistic representation of convection in atmospheric models is paramount for skillful predictions of hazardous weather as well as climate. In order to accurately describe mechanism of deep convection initiation, the forecasting models of thunderstorm occurrence are established from the perspectives of “point to face” and “integration of air and ground”, based on Cloud-to-Ground (CG) lightning and convection inducing factors. Firstly, we use the DBSCAN density clustering method to preprocess the discrete CG strokes, eliminating weak convection or noise; then we combine ERA5 with other valuable data sources and use machine learning to predict the probability of thunderstorms. Up to 49 input variables are used, representing, for example, instability, humidity, topography, land-cover. Feature importance derived from random forest (RF) models emphasize the high importance of conditional instability for deep convection. Topographic features accounts for 3%~4% of the total feature contribution, in which geographical position and elevation play a major role. In the comparison experiment of thunderstorm prediction with and without topographic factors, the former can make thunderstorm events and non-events tend to be predicted correctly, reduce false alarm ratio, and improve the overall skill of models. On the 2013–15 independent test, the 2013–15 RF model has a hit rate of 0.79, false alarm ratio is 0.65, and threat score is 0.32. Combining mesoscale reanalysis data with small-scale underlying surface data, the DBSCAN-RF can be used to further study climate trends in convective storms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, J.T., Karoly, D.J.: A climatology of Australian severe thunderstorm environments 1979–2011: inter-annual variability and ENSO influence. Int. J. Climatol. 34(1), 81–97 (2014)

    Article  Google Scholar 

  • Brooks, H.E.: Severe thunderstorms and climate change. Atmos. Res. 123, 129–138 (2013)

    Article  Google Scholar 

  • Chen, L., et al.: Performance evaluation for a lightning location system based on observations of artificially triggered lightning and natural lightning flashes. J. Atmos. Oceanic Tech. 29(12), 1835–1844 (2012)

    Article  Google Scholar 

  • Chen, S.M., Du, Y., Fan, L.M., He, H.M., Zhong, D.Z.: Evaluation of the Guang Dong lightning location system with transmission line fault data. IEE Proc.-Sci. Meas. Technol. 149(1), 9–16 (2002)

    Article  Google Scholar 

  • Czernecki, B., Taszarek, M., Kolendowicz, L., Konarski, J.: Relationship between human observations of thunderstorms and the PERUN lightning detection network in Poland. Atmos. Res. 167, 118–128 (2016)

    Article  Google Scholar 

  • Czernecki, B., et al.: Application of machine learning to large hail prediction-The importance of radar reflectivity, lightning occurrence and convective parameters derived from ERA5. Atmos. Res. 227, 249–262 (2019)

    Article  Google Scholar 

  • Doswell, C.A., III., Brooks, H.E., Maddox, R.A.: Flash flood forecasting: an ingredients-based methodology. Weather Forecast. 11(4), 560–581 (1996)

    Article  Google Scholar 

  • Doswell, C.A., III., Rasmussen, E.N.: The effect of neglecting the virtual temperature correction on CAPE calculations. Weather Forecast. 9(4), 625–629 (1994)

    Article  Google Scholar 

  • Fowle, M.A., Roebber, P.J.: Short-range (0–48 h) numerical prediction of convective occurrence, mode, and location. Weather Forecast. 18(5), 782–794 (2003)

    Article  Google Scholar 

  • Gijben, M., Dyson, L.L., Loots, M.T.: A statistical scheme to forecast the daily lightning threat over southern Africa using the Unified Model. Atmos. Res. 194, 78–88 (2017)

    Article  Google Scholar 

  • Kaltenböck, R., Diendorfer, G., Dotzek, N.: Evaluation of thunderstorm indices from ECMWF analyses, lightning data and severe storm reports. Atmos. Res. 93(1–3), 381–396 (2009)

    Article  Google Scholar 

  • Knupp, K.R., Cotton, W.R.: An intense, quasi-steady thunderstorm over mountainous terrain. Part II: Doppler radar observations of the storm morphological structure. Journal of Atmospheric Sciences 39(2), 343–358 (1982)

    Article  Google Scholar 

  • Kriegel, H.P., Kröger, P., Sander, J., Zimek, A.: Density-based clustering. Wiley Interdisc. Rev.: Data Min. Knowl. Discov. 1(3), 231–240 (2011)

    Google Scholar 

  • Kunz, M.: The skill of convective parameters and indices to predict isolated and severe thunderstorms. Nat. Hazard. 7(2), 327–342 (2007)

    Article  Google Scholar 

  • MacGorman, D.R., et al.: TELEX the thunderstorm electrification and lightning experiment. Bull. Am. Meteor. Soc. 89(7), 997–1014 (2008)

    Article  Google Scholar 

  • Manzato, A.: Sounding-derived indices for neural network based short-term thunderstorm and rainfall forecasts. Atmos. Res. 83(2–4), 349–365 (2007)

    Article  Google Scholar 

  • Mecikalski, J.R., Bedka, K.M.: Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery. Mon. Weather Rev. 134(1), 49–78 (2006)

    Article  Google Scholar 

  • Púčik, T., Groenemeijer, P., Rýva, D., Kolář, M.: Proximity soundings of severe and nonsevere thunderstorms in central Europe. Mon. Weather Rev. 143(12), 4805–4821 (2015)

    Article  Google Scholar 

  • Rajeevan, M., Kesarkar, A., Thampi, S. B., Rao, T. N., Radhakrishna, B., and Rajasekhar, M.: Sensitivity of WRF cloud microphysics to simulations of a severe thunderstorm event over Southeast India. In: Annales Geophysicae, pp. 603–619 (2010)

    Google Scholar 

  • Rajeevan, M., Madhulatha, A., Rajasekhar, M., Bhate, J., Kesarkar, A., Rao, B.A.: Development of a perfect prognosis probabilistic model for prediction of lightning over south-east India. J. Earth Syst. Sci. 121(2), 355–371 (2012)

    Article  Google Scholar 

  • Rasmussen, E.N., Blanchard, D.O.: A baseline climatology of sounding-derived supercell andtornado forecast parameters. Weather Forecast. 13(4), 1148–1164 (1998)

    Article  Google Scholar 

  • Roberts, R.D., Rutledge, S.: Nowcasting storm initiation and growth using GOES-8 and WSR-88D data. Weather Forecast. 18(4), 562–584 (2003)

    Article  Google Scholar 

  • Rutledge, S.A., Williams, E.R., Keenan, T.D.: The down under Doppler and electricity experiment (DUNDEE): Overview and preliminary results. Bull. Am. Meteor. Soc. 73(1), 3–16 (1992)

    Article  Google Scholar 

  • Shafer, P.E., Fuelberg, H.E.: A perfect prognosis scheme for forecasting warm-season lightning over Florida. Mon. Weather Rev. 136(6), 1817–1846 (2008)

    Article  Google Scholar 

  • Shi, M., et al.: Modelling deep convective activity using lightning clusters and machine learning. Int. J. Climatol. 42, 952–973 (2021)

    Article  Google Scholar 

  • Simon, T., Umlauf, N., Zeileis, A., Mayr, G.J., Schulz, W., Diendorfer, G.: Spatio-temporal modelling of lightning climatologies for complex terrain. Nat. Hazard. 17(3), 305–314 (2017)

    Article  Google Scholar 

  • Srivastava, A., et al.: Performance assessment of Beijing Lightning Network (BLNET) and comparison with other lightning location networks across Beijing. Atmos. Res. 197, 76–83 (2017)

    Article  Google Scholar 

  • Taszarek, M., et al.: A climatology of thunderstorms across Europe from a synthesis of multiple data sources. J. Clim. 32(6), 1813–1837 (2019)

    Article  Google Scholar 

  • Ukkonen, P., Manzato, A., Mäkelä, A.: Evaluation of thunderstorm predictors for Finland using reanalyses and neural networks. J. Appl. Meteorol. Climatol. 56(8), 2335–2352 (2017)

    Article  Google Scholar 

  • Ukkonen, P., Mäkelä, A.: Evaluation of machine learning classifiers for predicting deep convection. Journal of Advances in Modeling Earth Systems 11(6), 1784–1802 (2019)

    Article  Google Scholar 

  • Vila, D.A., Machado, L.A.T., Laurent, H., Velasco, I.: Forecast and tracking the evolution of cloud clusters (ForTraCC) using satellite infrared imagery: methodology and validation. Weather Forecast. 23(2), 233–245 (2008)

    Article  Google Scholar 

  • Wapler, K.: High-resolution climatology of lightning characteristics within Central Europe. Meteorol. Atmos. Phys. 122(3–4), 175–184 (2013). https://doi.org/10.1007/s00703-013-0285-1

    Article  Google Scholar 

  • Weisman, M.L., Davis, C., Wang, W., Manning, K.W., Klemp, J.B.: Experiences with 0–36-h explicit convective forecasts with the WRF-ARW model. Weather Forecast. 23(3), 407–437 (2008)

    Article  Google Scholar 

  • Williams, E.R., Geotis, S.G., Renno, N., Rutledge, S.A., Rasmussen, E., Rickenbach, T.: A radar and electrical study of tropical “hot towers.” J. Atmos. Sci. 49(15), 1386–1395 (1992)

    Article  Google Scholar 

  • Wilson, J.W., Mueller, C.K.: Nowcasts of thunderstorm initiation and evolution. Weather Forecast. 8(1), 113–131 (1993)

    Article  Google Scholar 

  • Zheng, L., Sun, J., Zhang, X., Liu, C.: Organizational modes of mesoscale convective systems over central East China. Weather Forecast. 28(5), 1081–1098 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manxing Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, M., Liu, X., Fan, P., Liu, Z., Li, Q. (2022). Using DBSCAN-RF Algorithm and Multi-source Features to Model Deep Convection in Hubei, China. In: Wu, H., et al. Spatial Data and Intelligence. SpatialDI 2022. Lecture Notes in Computer Science, vol 13614. Springer, Cham. https://doi.org/10.1007/978-3-031-24521-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24521-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24520-6

  • Online ISBN: 978-3-031-24521-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics