Skip to main content

Perusal of Camera Trap Sequences Across Locations

  • Conference paper
  • First Online:
Pattern Recognition Applications and Methods (ICPRAM 2021, ICPRAM 2022)

Abstract

The current rate of decline in biodiversity exclaims ecological conservation. In response, camera traps are being increasingly deployed for the perlustration of wildlife. The analyses of camera trap data can aid in curbing species extinction. However, a substantial amount of time is lost in the manual review curtailing the usage of camera traps for prompt decision-making. The insuperable visual challenges and proneness of camera trap to record empty frames (frames that are natural backdrops with no wildlife presence) deem wildlife detection and species recognition a demanding and taxing task. Thus, we propose a pipeline for wildlife detection and species recognition to expedite the processing of camera trap sequences. The proposed pipeline consists of three stages: (i) empty frame removal, (ii) wildlife detection, and (iii) species recognition and classification. We leverage vision transformer (ViT), DEtection TRansformer (DETR), vision and detection transformer (ViDT), faster region based convolutional neural network (Faster R-CNN), inception v3, and ResNet 50 for the same. We examine the adroitness of the leveraged algorithms at new and unseen locations against the challenges of domain generalisation. We demonstrate the effectiveness of the proposed pipeline using the Caltech camera trap (CCT) dataset.

This work is partially supported by the National Mission for Himalayan Studies (NMHS) grant GBPNI/NMHS-2019-20/SG/314.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banerjee, A., Dinesh, D.A., Bhavsar, A.: Sieving camera trap sequences in the wild. In: ICPRAM, pp. 470–479 (2022)

    Google Scholar 

  2. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  3. Beery, S., Van Horn, G., Perona, P.: Recognition in terra incognita. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 472–489. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_28

    Chapter  Google Scholar 

  4. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  5. Cheema, G.S., Anand, S.: Automatic detection and recognition of individuals in patterned species. In: Altun, Y., et al. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10536, pp. 27–38. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71273-4_3

    Chapter  Google Scholar 

  6. Cunha, F., dos Santos, E.M., Barreto, R., Colonna, J.G.: Filtering empty camera trap images in embedded systems. In: Proceedings of the IEEE CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 2438–2446 (2021)

    Google Scholar 

  7. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of 2005 IEEE computer society conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  8. Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  9. Emami, E., Fathy, M.: Object tracking using improved CAMshift algorithm combined with motion segmentation. In: Proceedings of the 7th Machine Vision and Image Processing (MVIP), 2011 Iranian, pp. 1–4 (2011)

    Google Scholar 

  10. Figueroa, K., Camarena-Ibarrola, A., García, J., Villela, H.T.: Fast automatic detection of wildlife in images from trap cameras. In: Bayro-Corrochano, E., Hancock, E. (eds.) CIARP 2014. LNCS, vol. 8827, pp. 940–947. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12568-8_114

    Chapter  Google Scholar 

  11. Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)

    Article  MATH  Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (CVPR 2016), pp. 770–778 (2016)

    Google Scholar 

  13. Hidayatullah, P., Konik, H.: CAMshift improvement on multi-hue and multi-object tracking. In: Proceedings of the 2011 International Conference on Electrical Engineering and Informatics, pp. 1–6 (2011)

    Google Scholar 

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. (NeurIPS 2012) 25, 1097–1105 (2012)

    Google Scholar 

  15. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)

  16. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  17. Loshchilov, I., Hutter, F.: Fixing weight decay regularization in adam (2018)

    Google Scholar 

  18. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the seventh IEEE International Conference on Computer Vision (ICCV), vol. 2, pp. 1150–1157. IEEE (1999)

    Google Scholar 

  19. Matuska, S., Hudec, R., Kamencay, P., Trnovszky, T.: A video camera road sign system of the early warning from collision with the wild animals. Civil Environ. Eng. 12(1), 42–46 (2016)

    Article  Google Scholar 

  20. Norouzzadeh, M.S., et al.: Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proc. Natl. Acad. Sci. 115(25), E5716–E5725 (2018)

    Article  Google Scholar 

  21. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1), 51–59 (1996)

    Article  Google Scholar 

  22. Pinto, F., Torr, P., Dokania, P.K.: Are vision transformers always more robust than convolutional neural networks? In: Advances in Neural Information Processing Systems (NeurIPS 2021) (2021)

    Google Scholar 

  23. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (CVPR 2017), pp. 7263–7271 (2017)

    Google Scholar 

  24. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-CNN: towards real-time object detection with region proposal networks. arXiv preprint arXiv:1506.01497 (2015)

  25. Schneider, S., Taylor, G.W., Kremer, S.: Deep learning object detection methods for ecological camera trap data. In: Proceedings of 2018 15th Conference on Computer and Robot Vision (CRV), pp. 321–328. IEEE (2018)

    Google Scholar 

  26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  27. Swanson, A., Kosmala, M., Lintott, C., Simpson, R., Smith, A., Packer, C.: Snapshot serengeti, high-frequency annotated camera trap images of 40 mammalian species in an African savanna. Scientific Data 2(1), 1–14 (2015)

    Article  Google Scholar 

  28. Swinnen, K.R., Reijniers, J., Breno, M., Leirs, H.: A novel method to reduce time investment when processing videos from camera trap studies. PLoS ONE 9(6), e98881 (2014)

    Google Scholar 

  29. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (CVPR 2015), pp. 1–9 (2015)

    Google Scholar 

  30. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016), pp. 2818–2826 (2016)

    Google Scholar 

  31. Wu, B., et al.: Visual transformers: token-based image representation and processing for computer vision. arXiv preprint arXiv:2006.03677 (2020)

  32. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2 (2019)

    Google Scholar 

  33. Yu, Y., Li, Y., Quian, T.: Automatic species identification in camera-trap images. Tech. rep, Stanford InfoLab (2018)

    Google Scholar 

  34. Zhang, Z., He, Z., Cao, G., Cao, W.: Animal detection from highly cluttered natural scenes using spatiotemporal object region proposals and patch verification. IEEE Trans. Multimedia 18(10), 2079–2092 (2016)

    Article  Google Scholar 

  35. Zhou, D.: Real-time animal detection system for intelligent vehicles, Ph. D. thesis, University of Ottawa (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anoushka Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Banerjee, A., Dinesh, D.A., Bhavsar, A. (2023). Perusal of Camera Trap Sequences Across Locations. In: De Marsico, M., Sanniti di Baja, G., Fred, A. (eds) Pattern Recognition Applications and Methods. ICPRAM ICPRAM 2021 2022. Lecture Notes in Computer Science, vol 13822. Springer, Cham. https://doi.org/10.1007/978-3-031-24538-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24538-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24537-4

  • Online ISBN: 978-3-031-24538-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics