Skip to main content

Identification of Crown and Rump in First-Trimester Ultrasound Images Using Deep Convolutional Neural Network

  • Conference paper
Applied Intelligence and Informatics (AII 2022)

Abstract

First-Trimester Ultrasound scans provide invaluable insight into early pregnancies. The scan is used to estimate the gestational age by providing a measurement of the Crown to Rump Length (CRL), it is a crucial scan as it informs obstetric practitioners of the optimal timing for any necessary interventions at the earliest point. Inter-observer variation creates problems for Obstetric Practitioners as any variation in the measurement of the CRL can carry complications to the fetus’ health. Existing machine learning systems to solve this problem are limited; this work details the creation of a machine learning pipeline that implements three Convolutional Neural Networks models (CNNs) to help identify the Crown and Rump regions in First-Trimester Ultrasound Images. The system segments the fetus in the image using a U-Net Model. The segmented image is then subject to an image classification model that implements a pre-trained CNN model, namely, VGG-16. This model is used to classify the segmented images into ‘Good’ and ‘Bad’. Finally, the segmented images are entered into a pre-trained ResNet34 model that identifies the Crown and Rump regions. This can be used by obstetric practitioners to provide an accurate CRL of the fetus and to comment on the actual development of the fetus from the First-trimester Ultrasound images. The system will mitigate issues with the estimation of the gestational age and reduce the inter-observer variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, S., Hossain, M.F., Nur, S.B., Shamim Kaiser, M., Mahmud, M.: Toward machine learning-based psychological assessment of autism spectrum disorders in school and community. In: Kaiser, M.S., Bandyopadhyay, A., Ray, K., Singh, R., Nagar, V. (eds.) Proceedings of Trends in Electronics and Health Informatics. LNNS, vol. 376, pp. 139–149. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-8826-3_13

    Chapter  Google Scholar 

  2. Aksoy, H., et al.: A prospective study to assess the clinical impact of interobserver reliability of sonographic measurements of fetal nuchal translucency and crown-rump length on combined first-trimester screening. North. Clin. Istanb. 2(2), 92 (2015)

    Google Scholar 

  3. Akter, T., Ali, M.H., Satu, M.S., Khan, M.I., Mahmud, M.: Towards autism subtype detection through identification of discriminatory factors using machine learning. In: Mahmud, M., Kaiser, M.S., Vassanelli, S., Dai, Q., Zhong, N. (eds.) BI 2021. LNCS (LNAI), vol. 12960, pp. 401–410. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86993-9_36

    Chapter  Google Scholar 

  4. Al Banna, M.H., Ghosh, T., Taher, K.A., Kaiser, M.S., Mahmud, M.: A monitoring system for patients of autism spectrum disorder using artificial intelligence. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds.) BI 2020. LNCS (LNAI), vol. 12241, pp. 251–262. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59277-6_23

    Chapter  Google Scholar 

  5. Al Banna, M.H., et al.: Attention-based bi-directional long-short term memory network for earthquake prediction. IEEE Access 9, 56589–56603 (2021)

    Article  Google Scholar 

  6. Al Nahian, M.J., Ghosh, T., Uddin, M.N., Islam, M.M., Mahmud, M., Kaiser, M.S.: Towards artificial intelligence driven emotion aware fall monitoring framework suitable for elderly people with neurological disorder. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds.) BI 2020. LNCS (LNAI), vol. 12241, pp. 275–286. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59277-6_25

    Chapter  Google Scholar 

  7. Al Nahian, M.J., et al.: Towards an accelerometer-based elderly fall detection system using cross-disciplinary time series features. IEEE Access 9, 39413–31 (2021)

    Article  Google Scholar 

  8. Alzubaidi, L., et al.: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data 8(1), 1–74 (2021)

    Article  Google Scholar 

  9. Amiri, M., Brooks, R., Behboodi, B., Rivaz, H.: Two-stage ultrasound image segmentation using u-net and test time augmentation. Int. J. Comput. Assist. Radiol. Surg. 15(6), 981–988 (2020)

    Article  Google Scholar 

  10. Balafar, M.A., et al.: Review of brain MRI image segmentation methods. Artif. Intell. Rev. 33(3), 261–274 (2010)

    Article  Google Scholar 

  11. Biswas, M., Kaiser, M.S., Mahmud, M., Al Mamun, S., Hossain, M.S., Rahman, M.A.: An XAI based autism detection: the context behind the detection. In: Mahmud, M., Kaiser, M.S., Vassanelli, S., Dai, Q., Zhong, N. (eds.) BI 2021. LNCS (LNAI), vol. 12960, pp. 448–459. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86993-9_40

    Chapter  Google Scholar 

  12. Biswas, M., Tania, M.H., Kaiser, M.S., et al.: ACCU3RATE: a mobile health application rating scale based on user reviews. PLoS One 16(12), e0258050 (2021)

    Article  Google Scholar 

  13. Butt, K., et al.: Determination of gestational age by ultrasound. J. Obstet. Gynaecol. Can. 36(2), 171–181 (2014)

    Article  Google Scholar 

  14. Deepa, B., et al.: Pattern descriptors orientation and map firefly algorithm based brain pathology classification using hybridized machine learning algorithm. IEEE Access 10, 3848–3863 (2022)

    Article  Google Scholar 

  15. Deepak, S., Ameer, P.: Brain tumor classification using deep cnn features via transfer learning. Comput. Biol. Med. 111, 103345 (2019)

    Google Scholar 

  16. Fabietti, M., Mahmud, M., Lotfi, A.: Anomaly detection in invasively recorded neuronal signals using deep neural network: effect of sampling frequency. In: Mahmud, M., Kaiser, M.S., Kasabov, N., Iftekharuddin, K., Zhong, N. (eds.) AII 2021. CCIS, vol. 1435, pp. 79–91. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-82269-9_7

    Chapter  Google Scholar 

  17. Fabietti, M., Mahmud, M., Lotfi, A.: Channel-independent recreation of artefactual signals in chronically recorded local field potentials using machine learning. Brain Inform. 9(1), 1–17 (2022). https://doi.org/10.1186/s40708-021-00149-x

    Article  Google Scholar 

  18. Fabietti, M., et al.: Artifact detection in chronically recorded local field potentials using long-short term memory neural network. In: Proceedings of AICT, pp. 1–6 (2020)

    Google Scholar 

  19. Faria, T.H., Shamim Kaiser, M., Hossian, C.A., Mahmud, M., Al Mamun, S., Chakraborty, C.: Smart city technologies for next generation healthcare. In: Chakraborty, C., Lin, J.C.-W., Alazab, M. (eds.) Data-Driven Mining, Learning and Analytics for Secured Smart Cities. ASTSA, pp. 253–274. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72139-8_12

    Chapter  Google Scholar 

  20. Ghosh, T., et al.: Artificial intelligence and internet of things in screening and management of autism spectrum disorder. Sustain. Cities Soc. 74, 103189 (2021)

    Google Scholar 

  21. Ghosh, T., et al.: An attention-based mood controlling framework for social media users. In: Mahmud, M., Kaiser, M.S., Vassanelli, S., Dai, Q., Zhong, N. (eds.) BI 2021. LNCS (LNAI), vol. 12960, pp. 245–256. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86993-9_23

    Chapter  Google Scholar 

  22. Ghosh, T., et al.: A hybrid deep learning model to predict the impact of COVID-19 on mental health form social media big data. Preprints 2021(2021060654) (2021)

    Google Scholar 

  23. Guo, Y., Duan, X., Wang, C., Guo, H.: Segmentation and recognition of breast ultrasound images based on an expanded u-net. PLoS One 16(6), e0253202 (2021)

    Google Scholar 

  24. Huang, Y.J.: Hands-on Medical image segmentation using U-net architecture implemented by deep learning framework Keras (2021). https://github.com/Huangyuren/unet_SCM

  25. Kagan, K.O., Hoopmann, M., Baker, A., Huebner, M., Abele, H., Wright, D.: Impact of bias in crown-rump length measurement at first-trimester screening for trisomy 21. Ultrasound Obstetr. Gynecol. 40(2), 135–139 (2012)

    Article  Google Scholar 

  26. Karki, D., Sharmqa, U., Rauniyar, R.: Study of accuracy of commonly used fetal parameters for estimation of gestational age. JNMA J. Nepal Med. Assoc. 45(162), 233–237 (2006)

    Google Scholar 

  27. Kim, B., et al.: Machine-learning-based automatic identification of fetal abdominal circumference from ultrasound images. Physiol. Meas. 39(10), 105007 (2018)

    Google Scholar 

  28. Kumar, I., et al.: Dense tissue pattern characterization using deep neural network. Cogn. Comput. 1–24 (2022). [ePub ahead of print]

    Google Scholar 

  29. Lalotra, G.S., Kumar, V., Bhatt, A., Chen, T., Mahmud, M.: iReTADS: an intelligent real-time anomaly detection system for cloud communications using temporal data summarization and neural network. Secur. Commun. Netw. 2022, 9149164 (2022)

    Article  Google Scholar 

  30. Liu, X., et al.: Automatic organ segmentation for CT scans based on super-pixel and convolutional neural networks. J. Digit. Imaging 31(5), 748–760 (2018)

    Article  Google Scholar 

  31. Liu, Z., Yang, C., Huang, J., Liu, S., Zhuo, Y., Lu, X.: Deep learning framework based on integration of S-mask R-CNN and inception-v3 for ultrasound image-aided diagnosis of prostate cancer. Future Gener. Comput. Syst. 114, 358–367 (2021)

    Article  Google Scholar 

  32. Mahmud, M., Kaiser, M.S., McGinnity, T.M., Hussain, A.: Deep learning in mining biological data. Cogn. Comput. 13(1), 1–33 (2021)

    Article  Google Scholar 

  33. Mahmud, M., et al.: Applications of deep learning and reinforcement learning to biological data. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2063–2079 (2018)

    Article  MathSciNet  Google Scholar 

  34. Mahmud, M., et al.: Towards explainable and privacy-preserving artificial intelligence for personalisation in autism spectrum disorder. In: Antona, M., Stephanidis, C. (eds.) HCII 2022. LNCS, vol. 13309, pp. 356–370. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-05039-8_26

    Chapter  Google Scholar 

  35. Mammoottil, M.J., Kulangara, L.J., Cherian, A.S., Mohandas, P., Hasikin, K., Mahmud, M.: Detection of breast cancer from five-view thermal images using convolutional neural networks. J. Healthc. Eng. 2022, 4295221 (2022)

    Article  Google Scholar 

  36. Nawar, A., Toma, N.T., Al Mamun, S., et al.: Cross-content recommendation between movie and book using machine learning. In: Proceedings AICT, pp. 1–6 (2021)

    Google Scholar 

  37. Ohuma, E.O., Papageorghiou, A.T., Villar, J., Altman, D.G.: Estimation of gestational age in early pregnancy from crown-rump length when gestational age range is truncated: the case study of the intergrowth-21stproject. BMC Med. Res. Methodol. 13(1), 1–14 (2013)

    Article  Google Scholar 

  38. Paul, A., et al.: Inverted bell-curve-based ensemble of deep learning models for detection of COVID-19 from chest X-rays. Neural Comput. Appl. 1–15 (2022)

    Google Scholar 

  39. Prakash, N., et al.: Deep transfer learning COVID-19 detection and infection localization with superpixel based segmentation. Sustain. Cities Soc. 75, 103252 (2021)

    Google Scholar 

  40. Riquelme, D., Akhloufi, M.A.: Deep learning for lung cancer nodules detection and classification in CT scans. AI 1(1), 28–67 (2020)

    Google Scholar 

  41. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  42. Satu, M.S., Rahman, S., Khan, M.I., Abedin, M.Z., Kaiser, M.S., Mahmud, M.: Towards improved detection of cognitive performance using bidirectional multilayer long-short term memory neural network. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds.) BI 2020. LNCS (LNAI), vol. 12241, pp. 297–306. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59277-6_27

    Chapter  Google Scholar 

  43. Satu, M.S., et al.: TClustVID: a novel machine learning classification model to investigate topics and sentiment in COVID-19 tweets. Knowl. Based Syst. 226, 107126 (2021)

    Google Scholar 

  44. Serte, S., Demirel, H.: Deep learning for diagnosis of COVID-19 using 3D CT scans. Comput. Biol. Med. 132, 104306 (2021)

    Google Scholar 

  45. Shen, Y.T., Chen, L., Yue, W.W., Xu, H.X.: Artificial intelligence in ultrasound. Eur. J. Radiol. 139, 109717 (2021)

    Google Scholar 

  46. Singh, R., Mahmud, M., Yovera, L.: Classification of first trimester ultrasound images using deep convolutional neural network. In: Mahmud, M., Kaiser, M.S., Kasabov, N., Iftekharuddin, K., Zhong, N. (eds.) AII 2021. CCIS, vol. 1435, pp. 92–105. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-82269-9_8

    Chapter  Google Scholar 

  47. Sumi, A.I., Zohora, M.F., Mahjabeen, M., Faria, T.J., Mahmud, M., Kaiser, M.S.: fASSERT: a fuzzy assistive system for children with autism using internet of things. In: BI 2018. LNCS (LNAI), vol. 11309, pp. 403–412. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05587-5_38

    Chapter  Google Scholar 

  48. Wadhera, T., Mahmud, M.: Brain networks in autism spectrum disorder, epilepsy and their relationship: a machine learning approach. In: Chen, T., Carter, J., Mahmud, M., Khuman, A.S. (eds.) Artificial Intelligence in Healthcare. Brain Informatics and Health, pp. 125–142. Springer, Singapore (2022). https://doi.org/10.1007/978-981-19-5272-2_6

    Chapter  Google Scholar 

  49. Wadhera, T., Mahmud, M.: Influences of social learning in individual perception and decision making in people with autism: a computational approach. In: Mahmud, M., He, J., Vassanelli, S., van Zundert, A., Zhong, N. (eds.) BI 2022. LNCS, vol. 13406, pp. 50–61. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15037-1_5

    Chapter  Google Scholar 

  50. Watkins, J., Fabietti, M., Mahmud, M.: SENSE: a student performance quantifier using sentiment analysis. In: Proceedings of IJCNN, pp. 1–6 (2020)

    Google Scholar 

  51. Weston, A.D., et al.: Automated abdominal segmentation of CT scans for body composition analysis using deep learning. Radiology 290(3), 669–679 (2019)

    Article  Google Scholar 

  52. Zhang, J., Petitjean, C., Lopez, P., Ainouz, S.: Direct estimation of fetal head circumference from ultrasound images based on regression CNN. In: Medical Imaging with Deep Learning, pp. 914–922 (2020)

    Google Scholar 

Download references

Acknowledgments

Data used in this study was obtained from the Fetal Medicine Centre at Southend University Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mufti Mahmud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Cite this paper

Sutton, S., Mahmud, M., Singh, R., Yovera, L. (2022). Identification of Crown and Rump in First-Trimester Ultrasound Images Using Deep Convolutional Neural Network. In: Mahmud, M., Ieracitano, C., Kaiser, M.S., Mammone, N., Morabito, F.C. (eds) Applied Intelligence and Informatics. AII 2022. Communications in Computer and Information Science, vol 1724. Springer, Cham. https://doi.org/10.1007/978-3-031-24801-6_17

Download citation

Publish with us

Policies and ethics