Skip to main content

Beware the Sirens: Prototyping an Emergency Vehicle Detection System for Smart Cars

  • Conference paper
Applied Intelligence and Informatics (AII 2022)

Abstract

Vehicle drivers should be able to react coherently in anomalous circumstances, such as the quick arrival of an emergency vehicle with sirens wailing. This situation requires all regular vehicles to give way or slow down, depending on the road and traffic conditions. In this paper, we address an automatic system that assists the driver in reacting to the arrival of an emergency vehicle by employing audio and video algorithms based on Deep Learning. More specifically, by leveraging sound recognition algorithms, the vehicle is able to detect the arrival of the emergency vehicle by its siren sound. In such an event, by making use of computer vision algorithms, the vehicle intelligence can monitor the driver’s gaze and awareness towards the emergency vehicle and assess his/her awareness. The paper describes the process of integrating these technologies into a commercial car, the creation of new datasets and the challenges encountered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    DAVIS346 Datasheet available at the following URL: https://inivation.com/wp-content/uploads/2019/08/DAVIS346.pdf.

  2. 2.

    https://kivy.org/.

  3. 3.

    http://www.portaudio.com/.

  4. 4.

    https://pytorch.org/.

  5. 5.

    Eyeware toolchain (public) https://github.com/eyeware.

  6. 6.

    SerpApi - Google Image API https://serpapi.com/.

References

  1. Abdić, I., et al.: Detecting road surface wetness from audio: a deep learning approach. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 3458–3463. IEEE (2016)

    Google Scholar 

  2. Ahmed, M., Masood, S., Ahmad, M., Abd El-Latif, A.A.: Intelligent driver drowsiness detection for traffic safety based on multi CNN deep model and facial subsampling. IEEE Trans. Intell. Transp. Syst. (2021)

    Google Scholar 

  3. Beritelli, F., Casale, S., Russo, A., Serrano, S.: An automatic emergency signal recognition system for the hearing impaired. In: 2006 IEEE 12th Digital Signal Processing Workshop & 4th IEEE Signal Processing Education Workshop, pp. 179–182. IEEE (2006)

    Google Scholar 

  4. Cantarini, M., Brocanelli, A., Gabrielli, L., Squartini, S.: Acoustic features for deep learning-based models for emergency siren detection: an evaluation study. In: 2021 12th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 47–53. IEEE (2021)

    Google Scholar 

  5. Cantarini, M., Serafini, L., Gabrielli, L., Principi, E., Squartini, S.: Emergency siren recognition in urban scenarios: synthetic dataset and deep learning models. In: Huang, D.-S., Bevilacqua, V., Hussain, A. (eds.) ICIC 2020. LNCS, vol. 12463, pp. 207–220. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60799-9_18

    Chapter  Google Scholar 

  6. Carmel, D., Yeshurun, A., Moshe, Y.: Detection of alarm sounds in noisy environments. In: 2017 25th European Signal Processing Conference (EUSIPCO), pp. 1839–1843. IEEE (2017)

    Google Scholar 

  7. Cho, H., Seo, Y.W., Kumar, B.V., Rajkumar, R.R.: A multi-sensor fusion system for moving object detection and tracking in urban driving environments. In: Robotics and Automation (ICRA), 2014 IEEE International Conference on, pp. 1836–1843. IEEE (2014)

    Google Scholar 

  8. Ebizuka, Y., Kato, S., Itami, M.: Detecting approach of emergency vehicles using siren sound processing. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 4431–4436. IEEE (2019)

    Google Scholar 

  9. Fatimah, B., Preethi, A., Hrushikesh, V., Singh, A., Kotion, H.R.: An automatic siren detection algorithm using fourier decomposition method and MFCC. In: 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–6. IEEE (2020)

    Google Scholar 

  10. Fazenda, B., Atmoko, H., Gu, F., Guan, L., Ball, A.: Acoustic based safety emergency vehicle detection for intelligent transport systems. In: 2009 ICCAS-SICE, pp. 4250–4255. IEEE (2009)

    Google Scholar 

  11. Feng, Y., Goulding-Hotta, N., Khan, A., Reyserhove, H., Zhu, Y.: Real-time gaze tracking with event-driven eye segmentation (2022). https://doi.org/10.48550/ARXIV.2201.07367

  12. Gabrielli, L., Ambrosini, L., Vesperini, F., Bruschi, V., Squartini, S., Cattani, L.: Processing acoustic data with siamese neural networks for enhanced road roughness classification. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE (2019)

    Google Scholar 

  13. Gallego, G., et al.: Event-based vision: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(1), 154–180 (2022). https://doi.org/10.1109/TPAMI.2020.3008413

    Article  Google Scholar 

  14. Hakobyan, G., Yang, B.: High-performance automotive radar: a review of signal processing algorithms and modulation schemes. IEEE Signal Process. Mag. 36(5), 32–44 (2019)

    Article  Google Scholar 

  15. Kartynnik, Y., Ablavatski, A., Grishchenko, I., Grundmann, M.: Real-time facial surface geometry from monocular video on mobile GPUs. arXiv preprint arXiv:1907.06724 (2019)

  16. Li, Y., Ibanez-Guzman, J.: Lidar for autonomous driving: the principles, challenges, and trends for automotive lidar and perception systems. IEEE Signal Process. Mag. 37(4), 50–61 (2020)

    Article  Google Scholar 

  17. Liaw, J.J., Wang, W.S., Chu, H.C., Huang, M.S., Lu, C.P.: Recognition of the ambulance siren sound in Taiwan by the longest common subsequence. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics, pp. 3825–3828. IEEE (2013)

    Google Scholar 

  18. Maqueda, A.I., Loquercio, A., Gallego, G., García, N., Scaramuzza, D.: Event-based vision meets deep learning on steering prediction for self-driving cars. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5419–5427 (2018). https://doi.org/10.1109/CVPR.2018.00568

  19. Marchegiani, L., Newman, P.: Listening for sirens: locating and classifying acoustic alarms in city scenes. IEEE Trans. Intell. Transp. Syst. (2022)

    Google Scholar 

  20. Mesaros, A., Heittola, T., Virtanen, T., Plumbley, M.D.: Sound event detection: a tutorial. IEEE Signal Process. Mag. 38(5), 67–83 (2021)

    Article  Google Scholar 

  21. Meucci, F., Pierucci, L., Del Re, E., Lastrucci, L., Desii, P.: A real-time siren detector to improve safety of guide in traffic environment. In: 2008 16th European Signal Processing Conference, pp. 1–5. IEEE (2008)

    Google Scholar 

  22. Miyazakia, T., Kitazonoa, Y., Shimakawab, M.: Ambulance siren detector using FFT on dsPIC. In: Proceedings of the 1st IEEE/IIAE International Conference on Intelligent Systems and Image Processing, pp. 266–269 (2013)

    Google Scholar 

  23. Padhy, S., Tiwari, J., Rathore, S., Kumar, N.: Emergency signal classification for the hearing impaired using multi-channel convolutional neural network architecture. In: 2019 IEEE Conference on Information and Communication Technology, pp. 1–6. IEEE (2019)

    Google Scholar 

  24. Pepe, G., Gabrielli, L., Ambrosini, L., Squartini, S., Cattani, L.: Detecting road surface wetness using microphones and convolutional neural networks. In: Audio Engineering Society Convention, no. 146. Audio Engineering Society (2019)

    Google Scholar 

  25. Picot, A., Caplier, A., Charbonnier, S.: Comparison between EOG and high frame rate camera for drowsiness detection. In: 2009 Workshop on Applications of Computer Vision (WACV), pp. 1–6 (2009). https://doi.org/10.1109/WACV.2009.5403120

  26. Ramzan, M., Khan, H.U., Awan, S.M., Ismail, A., Ilyas, M., Mahmood, A.: A survey on state-of-the-art drowsiness detection techniques. IEEE Access 7, 61904–61919 (2019)

    Article  Google Scholar 

  27. Roriz, R., Cabral, J., Gomes, T.: Automotive lidar technology: a survey. IEEE Trans. Intell. Transp. Syst. (2021)

    Google Scholar 

  28. Ryan, C., et al.: Real-time face & eye tracking and blink detection using event cameras. Neural Netw. 141, 87–97 (2021)

    Article  Google Scholar 

  29. Saadna, Y., Behloul, A.: An overview of traffic sign detection and classification methods. Int. J. Multimedia Inf. Retr. 6(3), 193–210 (2017). https://doi.org/10.1007/s13735-017-0129-8

    Article  Google Scholar 

  30. Sahayadhas, A., Sundaraj, K., Murugappan, M.: Detecting driver drowsiness based on sensors: a review. Sensors 12(12), 16937–16953 (2012)

    Article  Google Scholar 

  31. Schröder, J., Goetze, S., Grützmacher, V., Anemüller, J.: Automatic acoustic siren detection in traffic noise by part-based models. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 493–497. IEEE (2013)

    Google Scholar 

  32. Society of Automotive Engineers: SAE j3016 standard: Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles (2021)

    Google Scholar 

  33. Tran, V.T., Tsai, W.H.: Acoustic-based emergency vehicle detection using convolutional neural networks. IEEE Access 8, 75702–75713 (2020)

    Article  Google Scholar 

  34. Tran, V.T., Tsai, W.H.: Audio-vision emergency vehicle detection. IEEE Sens. J. 21(24), 27905–27917 (2021)

    Article  Google Scholar 

  35. Versaci, M., Calcagno, S., Morabito, F.C.: Image contrast enhancement by distances among points in fuzzy hyper-cubes. In: Azzopardi, G., Petkov, N. (eds.) CAIP 2015. LNCS, vol. 9257, pp. 494–505. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23117-4_43

    Chapter  Google Scholar 

  36. Waldschmidt, C., Hasch, J., Menzel, W.: Automotive radar-from first efforts to future systems. IEEE J. Microw. 1(1), 135–148 (2021)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by Marche Region in implementation of the financial programme POR MARCHE FESR 2014-2020, project “Miracle” (Marche Innovation and Research fAcilities for Connected and sustainable Living Environments), CUP B28I19000330007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Gabrielli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Cite this paper

Cantarini, M., Gabrielli, L., Migliorelli, L., Mancini, A., Squartini, S. (2022). Beware the Sirens: Prototyping an Emergency Vehicle Detection System for Smart Cars. In: Mahmud, M., Ieracitano, C., Kaiser, M.S., Mammone, N., Morabito, F.C. (eds) Applied Intelligence and Informatics. AII 2022. Communications in Computer and Information Science, vol 1724. Springer, Cham. https://doi.org/10.1007/978-3-031-24801-6_31

Download citation

Publish with us

Policies and ethics