Skip to main content

Indoor Positioning and Navigation Using Bluetooth Low Energy and Cloud Service in Healthcare Perspective

  • Conference paper
Applied Intelligence and Informatics (AII 2022)

Abstract

People are able to explore unfamiliar surroundings with more ease due to navigation devices. Users can now incorporate these systems into handheld devices as a result of recent technological advancements that have increased the popularity and number of people using navigation systems. Due to poor reception of Global Positioning System (GPS) signals and a non-line of sight with orbiting satellites, it is more difficult to navigate within a building using GPS signals. Tracking and navigation within a structure can be accomplished by a handheld device (such as a smartphone or wearable) through the use of a wireless interface such as Bluetooth Low Energy (BLE). This type of technology can be used to monitor and guide patients with neurological illnesses, such as Alzheimer’s disease (AD), within the hospital premises. This study describes a system for indoor navigation based on wireless sensors, a mobile health application (mHealth app), and Bluetooth beacons. The study goes into great detail about how the mHealth app interacts with the cloud-based architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/shayekh/Alzheimer-master.

References

  1. Namiot, D.: On indoor positioning. Int. J. Open Inf. Technol. 3(3), 23–26 (2015)

    Google Scholar 

  2. Kaluža, M., Beg, K., Vukelić, B.: Analysis of an indoor positioning systems. Zbornik Veleučilišta u Rijeci 5(1), 13–32 (2017)

    Article  Google Scholar 

  3. Kaiser, M.S., et al.: iWorkSafe: towards healthy workplaces during COVID-19 with an intelligent pHealth app for industrial settings. IEEE Access 9, 13814–13828 (2021)

    Article  Google Scholar 

  4. Kalbandhe, A.A., Patil, S.C.: Indoor positioning system using bluetooth low energy. In: 2016 International Conference on Computing, Analytics and Security Trends (CAST), pp. 451–455. IEEE (2016)

    Google Scholar 

  5. Terán, M., Carrillo, H., Parra, C.: Wlan-ble based indoor positioning system using machine learning cloud services. In: 2018 IEEE 2nd Colombian Conference on Robotics and Automation (CCRA), pp. 1–6. IEEE (2018)

    Google Scholar 

  6. Afsana, F., Asif-Ur-Rahman, M., Ahmed, M.R., Mahmud, M., Kaiser, M.S.: An energy conserving routing scheme for wireless body sensor nanonetwork communication. IEEE Access 6, 9186–9200 (2018)

    Article  Google Scholar 

  7. Asif-Ur-Rahman, M., et al.: Toward a heterogeneous mist, fog, and cloud-based framework for the internet of healthcare things. IEEE Int. Things J. 6(3), 4049–4062 (2018)

    Article  Google Scholar 

  8. Kaiser, M.S., et al.: 6G access network for intelligent internet of healthcare things: opportunity, challenges, and research directions. In: Kaiser, M.S., Bandyopadhyay, A., Mahmud, M., Ray, K. (eds.) Proceedings of International Conference on Trends in Computational and Cognitive Engineering. AISC, vol. 1309, pp. 317–328. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-4673-4_25

    Chapter  Google Scholar 

  9. Mahmud, M., et al.: A brain-inspired trust management model to assure security in a cloud based IoT framework for neuroscience applications. Cogn. Comput. 10(5), 864–873 (2018)

    Article  Google Scholar 

  10. Kaiser, M.S., et al.: Advances in crowd analysis for urban applications through urban event detection. IEEE Trans. Intel. Transp. Syst. 19(10), 3092–3112 (2017)

    Article  Google Scholar 

  11. Mahmud, M., Kaiser, M.S., McGinnity, T.M., Hussain, A.: Deep learning in mining biological data. Cogn. Comput. 13(1), 1–33 (2021)

    Article  Google Scholar 

  12. Jesmin, S., Kaiser, M.S., Mahmud, M.: Artificial and internet of healthcare things based Alzheimer care during COVID 19. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds.) BI 2020. LNCS (LNAI), vol. 12241, pp. 263–274. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59277-6_24

    Chapter  Google Scholar 

  13. Biswas, M., et al.: Prototype development of an assistive smart-stick for the visually challenged persons. In: 2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM), vol. 2, pp. 477–482. IEEE (2022)

    Google Scholar 

  14. Chaki, S., Ahmed, S., Biswas, M., Tamanna, I.: A framework of an obstacle avoidance robot for the visually impaired people. In: Kaiser, M.S., Bandyopadhyay, A., Ray, K., Singh, R., Nagar, V. (eds.) Proceedings of Trends in Electronics and Health Informatics. LNNS, vol. 376, pp. 269–280. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-8826-3_24

    Chapter  Google Scholar 

  15. Biswas, M., Kaiser, M.S., Mahmud, M., Al Mamun, S., Hossain, M.S., Rahman, M.A.: An XAI based autism detection: the context behind the detection. In: Mahmud, M., Kaiser, M.S., Vassanelli, S., Dai, Q., Zhong, N. (eds.) BI 2021. LNCS (LNAI), vol. 12960, pp. 448–459. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86993-9_40

    Chapter  Google Scholar 

  16. Noor, M.B.T., Zenia, N.Z., Kaiser, M.S., Mamun, S.A., Mahmud, M.: Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of Alzheimer’s disease, Parkinson’s disease and schizophrenia. Brain Informat. 7(1), 1–21 (2020). https://doi.org/10.1186/s40708-020-00112-2

    Article  Google Scholar 

  17. Lin, T.N., Lin, P.C.: Performance comparison of indoor positioning techniques based on location fingerprinting in wireless networks. In: 2005 International Conference on Wireless Networks, Communications and Mobile Computing, vol. 2, pp. 1569–1574. IEEE (2005)

    Google Scholar 

  18. Biswas, M., et al.: Indoor navigation support system for patients with neurodegenerative diseases. In: Mahmud, M., Kaiser, M.S., Vassanelli, S., Dai, Q., Zhong, N. (eds.) BI 2021. LNCS (LNAI), vol. 12960, pp. 411–422. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86993-9_37

    Chapter  Google Scholar 

  19. Gallagher, T.J., Li, B., Dempster, A.G., Rizos, C.: A sector-based campus-wide indoor positioning system. In: 2010 International Conference on Indoor Positioning and Indoor Navigation, pp. 1–8. IEEE (2010)

    Google Scholar 

  20. Faragher, R., Harle, R.: Location fingerprinting with bluetooth low energy beacons. IEEE J. Sel. Areas Commun. 33(11), 2418–2428 (2015)

    Article  Google Scholar 

  21. Bai, L., Ciravegna, F., Bond, R., Mulvenna, M.: A low cost indoor positioning system using bluetooth low energy. IEEE Access 8, 136858–136871 (2020)

    Article  Google Scholar 

  22. Park, J., Kim, J., Kang, S., et al.: Ble-based accurate indoor location tracking for home and office. Comput. Sci. Inf. Technol. (CS & IT) CSCP, 173–181 (2015)

    Google Scholar 

  23. Bisio, I., Sciarrone, A., Zappatore, S.: Asset tracking architecture with bluetooth low energy tags and ad hoc smartphone applications. In: 2015 European Conference on Networks and Communications (EuCNC), pp. 460–464. IEEE (2015)

    Google Scholar 

  24. Chen, C.Y., Yang, J.P., Tseng, G.J., Wu, Y.H., et al. An indoor positioning technique based on fuzzy logic. In: MultiConference of Engineers and Computer Scientists, pp. 854–857. Citeseer (2010)

    Google Scholar 

  25. Yang, C., Shao, H.-R.: WiFi-based indoor positioning. IEEE Commun. Mag. 53(3), 150–157 (2015)

    Article  Google Scholar 

  26. Yim, J.: Introducing a decision tree-based indoor positioning technique. Expert Syst. Appl. 34(2), 1296–1302 (2008)

    Article  Google Scholar 

  27. Tsetsos, V., Anagnostopoulos, C., Kikiras, P., Hasiotis, P., Hadjiefthymiades, S.: A human-centered semantic navigation system for indoor environments. In: 2005 Proceedings of the International Conference on Pervasive Services (ICPS), pp. 146–155. IEEE (2005)

    Google Scholar 

  28. Terán, M., Aranda, J., Carrillo, H., Mendez, D., Parra, C.: Iot-based system for indoor location using bluetooth low energy. In: 2017 IEEE Colombian Conference on Communications and Computing (COLCOM), pp. 1–6. IEEE (2017)

    Google Scholar 

  29. Kunhoth, J., Karkar, A.G., Al-Maadeed, S., Al-Attiyah, A.: Comparative analysis of computer-vision and BLE technology based indoor navigation systems for people with visual impairments. Int. J. Health Geogr. 18(1), 1–18 (2019). https://doi.org/10.1186/s12942-019-0193-9

    Article  Google Scholar 

Download references

Acknowledgements

This research is a part of ICT (Information and Communication Technology) Fellowship and supported by ICT Division, Bangladesh. The authors would like to thank the Ministry of Posts, Telecommunications and Information Technology, Government of the People’s Republic of Bangladesh. The authors would also like to acknowledge the cooperation of the IIT (Institute of Information Technology), Jahangirnagar University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Shayekh Ebne Mizan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Cite this paper

Mizan, K.S.E. et al. (2022). Indoor Positioning and Navigation Using Bluetooth Low Energy and Cloud Service in Healthcare Perspective. In: Mahmud, M., Ieracitano, C., Kaiser, M.S., Mammone, N., Morabito, F.C. (eds) Applied Intelligence and Informatics. AII 2022. Communications in Computer and Information Science, vol 1724. Springer, Cham. https://doi.org/10.1007/978-3-031-24801-6_32

Download citation

Publish with us

Policies and ethics