Skip to main content

Detection of Object-Based Forgery in Surveillance Videos Utilizing Motion Residual and Deep Learning

  • Conference paper
  • First Online:
Distributed Computing and Intelligent Technology (ICDCIT 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13776))

  • 492 Accesses

Abstract

In recent years, video surveillance plays an important role in security applications as well as legal sectors. For example, CCTV footage can be submitted as evidence of a crime scene in a courtroom. However, the recorded video footage can be manipulated, for example, an object can be removed from a video through low-cost and easily available video editing tools. Any sensitive surveillance video should be verified before being accepted as a piece of evidence of events/circumstances. In this paper, we present a motion residual and Deep Learning based forensic approach to identify object-based forged frames in surveillance videos. Firstly, the motion residuals are computed from the videos sequences to extract the video forgery footprints, which are generated due to the manipulation operations. Secondly, the computed motion residuals are fed to VGG-16 network for detecting authentic and forged frames in a surveillance video.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbasi Aghamaleki, J., Behrad, A.: Malicious inter-frame video tampering detection in MPEG videos using time and spatial domain analysis of quantization effects. Multimed. Tools Appl. 76(20), 20691–20717 (2016). https://doi.org/10.1007/s11042-016-4004-z

    Article  Google Scholar 

  2. Aloraini, M., Sharifzadeh, M., Schonfeld, D.: Sequential and patch analyses for object removal video forgery detection and localization. IEEE Trans. Circuits Syst. Video Technol. 31(3), 917–930 (2020)

    Article  Google Scholar 

  3. Bagiwa, M.A., Wahab, A.W.A., Idris, M.Y.I., Khan, S., Choo, K.K.R.: Chroma key background detection for digital video using statistical correlation of blurring artifact. Digit. Investig. 19, 29–43 (2016)

    Article  Google Scholar 

  4. Bakas, J., Naskar, R.: A digital forensic technique for inter–frame video forgery detection based on 3D CNN. In: Ganapathy, V., Jaeger, T., Shyamasundar, R.K. (eds.) ICISS 2018. LNCS, vol. 11281, pp. 304–317. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05171-6_16

    Chapter  Google Scholar 

  5. Bakas, J., Naskar, R., Nappi, M., Bakshi, S.: Object-based forgery detection in surveillance video using capsule network. J. Ambient. Intell. Humaniz. Comput. 1–11 (2021). https://doi.org/10.1007/s12652-021-03511-3

  6. Chen, S., Tan, S., Li, B., Huang, J.: Automatic detection of object-based forgery in advanced video. IEEE Trans. Circuits Syst. Video Technol. 26(11), 2138–2151 (2016). https://doi.org/10.1109/TCSVT.2015.2473436

    Article  Google Scholar 

  7. D’Avino, D., Cozzolino, D., Poggi, G., Verdoliva, L.: Autoencoder with recurrent neural networks for video forgery detection. Electron. Imaging 2017(7), 92–99 (2017)

    Article  Google Scholar 

  8. Johnston, P., Elyan, E.: A review of digital video tampering: from simple editing to full synthesis. Digit. Investig. 29, 67–81 (2019)

    Article  Google Scholar 

  9. Kodovskỳ, J., Fridrich, J.: Calibration revisited. In: Proceedings of the 11th ACM Workshop on Multimedia and Security, pp. 63–74 (2009)

    Google Scholar 

  10. Kodovsky, J., Fridrich, J.: Steganalysis of JPEG images using rich models. In: Media Watermarking, Security, and Forensics, vol. 8303, p. 83030A. International Society for Optics and Photonics (2012)

    Google Scholar 

  11. Kodovsky, J., Fridrich, J., Holub, V.: Ensemble classifiers for steganalysis of digital media. IEEE Trans. Inf. Forensics Secur. 7(2), 432–444 (2011)

    Article  Google Scholar 

  12. Mizher, M.A., Ang, M.C., Mazhar, A.A., Mizher, M.A.: A review of video falsifying techniques and video forgery detection techniques. Int. J. Electron. Secur. Digit. Forensics 9(3), 191–208 (2017)

    Article  Google Scholar 

  13. Nguyen, H.H., Yamagishi, J., Echizen, I.: Capsule-forensics: using capsule networks to detect forged images and videos. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2307–2311 (2019)

    Google Scholar 

  14. Pandey, R.C., Singh, S.K., Shukla, K.K.: A passive forensic method for video: exposing dynamic object removal and frame duplication in the digital video using sensor noise features. J. Intell. Fuzzy Syst. 32(5), 3339–3353 (2017)

    Article  Google Scholar 

  15. Richao, C., Gaobo, Y., Ningbo, Z.: Detection of object-based manipulation by the statistical features of object contour. Forensic Sci. Int. 236, 164–169 (2014)

    Article  Google Scholar 

  16. Shanableh, T.: Detection of frame deletion for digital video forensics. Digit. Investig. 10(4), 350–360 (2013)

    Article  Google Scholar 

  17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Computer Science. arXiv preprint arXiv:1409.1556 (2014)

  18. Sitara, K., Mehtre, B.M.: Digital video tampering detection: an overview of passive techniques. Digit. Investig. 18, 8–22 (2016)

    Article  Google Scholar 

  19. Su, K., Kundur, D., Hatzinakos, D.: Statistical invisibility for collusion-resistant digital video watermarking. IEEE Trans. Multimedia 7(1), 43–51 (2005)

    Article  Google Scholar 

  20. Su, Y., Han, Y., Zhang, C.: Detection of blue screen based on edge features. In: 2011 6th IEEE Joint International Information Technology and Artificial Intelligence Conference, vol. 2, pp. 469–472. IEEE (2011)

    Google Scholar 

  21. Xu, J., Yu, Y., Su, Y., Dong, B., You, X.: Detection of blue screen special effects in videos. Phys. Procedia 33, 1316–1322 (2012)

    Article  Google Scholar 

  22. Xu, R., Li, X., Zhou, B., Loy, C.C.: Deep flow-guided video inpainting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3723–3732 (2019)

    Google Scholar 

  23. Zhang, J., Su, Y., Zhang, M.: Exposing digital video forgery by ghost shadow artifact. In: Proceedings of the First ACM Workshop on Multimedia in Forensics, pp. 49–54 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamimamul Bakas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Raj, M., Bakas, J. (2023). Detection of Object-Based Forgery in Surveillance Videos Utilizing Motion Residual and Deep Learning. In: Molla, A.R., Sharma, G., Kumar, P., Rawat, S. (eds) Distributed Computing and Intelligent Technology. ICDCIT 2023. Lecture Notes in Computer Science, vol 13776. Springer, Cham. https://doi.org/10.1007/978-3-031-24848-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24848-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24847-4

  • Online ISBN: 978-3-031-24848-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics