Abstract
The separation of two polyhedra by a family of parallel hyperplanes is a well-known problem with important applications in operations research,statistics and functional analysis. In this paper, we introduce a new algorithm for constructing a family of parallel hyperplanes that separates two disjoint polyhedra given by a system of linear inequalities. To do this, we consider the alternative system and introduce its dual problem using the alternative theorem. We can find its minimum-norm solution by combining the objective function and constraints into a penalty function. Since our objective function is only once differentiable, we propose an extension of Newton’s method to solve the unconstrained objective optimization. The computational outcomes demonstrate the efficacy of the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arabasadi, Z., Alizadehsani, R., Roshanzamir, M., Moosaei, H., Yarifard, A.A.: Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm. Comput. Methods Programs Biomed. 141, 19–26 (2017)
Armijo, L.: Minimization of functions having lipschitz continuous first partial derivatives. Pac. J. Math. 16(1), 1–3 (1966)
Astorino, A., Gaudioso, M.: Polyhedral separability through successive LP. J. Optim. theory appl. 112(2), 265–293 (2002)
Astorino, A., Francesco, M.D., Gaudioso, M., Gorgone, E., Manca, B.: Polyhedral separation via difference of convex (DC) programming. Soft. Comput. 25(19), 12605–12613 (2021). https://doi.org/10.1007/s00500-021-05758-6
Astorino, A., Fuduli, A.: Support vector machine polyhedral separability in semisupervised learning. J. Optim. Theory Appl. 164(3), 1039–1050 (2015)
Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: theory and algorithms. John Wiley Sons (2013)
Bazikar, F., Ketabchi, S., Moosaei, H.: DC programming and DCA for parametric-margin \(\nu \)-support vector machine. Appl. Intell. 50(6), 1763–1774 (2020)
Broyden, C.: On theorems of the alternative. Optim. methods softw. 16(1–4), 101–111 (2001)
Cai, Y.D., Ricardo, P.W., Jen, C.H., Chou, K.C.: Application of SVM to predict membrane protein types. J. Theor. Biol. 226(4), 373–376 (2004)
Eremin, I.I.: Theory Linear Optim. VSP, Utrecht (2002)
Evtushenko, Y.G., Golikov, A.I., Ketabchi, S.: Numerical methods for separating two polyhedra. In: Large-Scale Nonlinear Optimization, pp. 95–113. Springer (2006)
Grygarová, L.: A calculation of all separating hyperplanes of two convex polytopes. Optimization 41(1), 57–69 (1997). https://doi.org/10.1080/02331939708844325
Grygarová, L.: On a calculation of an arbitrary separating hyperplane of convex polyhedral sets. Optimization 43(2), 93–112 (1998). https://doi.org/10.1080/02331939808844377
Hiriart-Urruty, J.B., Strodiot, J.J., Nguyen, V.H.: Generalized hessian matrix and second-order optimality conditions for problems with \(C^{1,1}\) data. Appl. Math. Optimi. 11(1), 43–56 (1984)
Hladík, M.: Separation of convex polyhedral sets with column parameters. Kybernetika 44(1), 113–130 (2008)
Hladík, M.: On the separation of parametric convex polyhedral sets with application in MOLP. Appl. Math. 55(4), 269–289 (2010)
Javadi, S.H., Moosaei, H., Ciuonzo, D.: Learning wireless sensor networks for source localization. Sensors 19(3), 635 (2019)
Kanzow, C., Qi, H., Qi, L.: On the minimum norm solution of linear programs. J. Optim. Theory Appl. 116(2), 333–345 (2003)
Ketabchi, S., Moosaei, H., Razzaghi, M., Pardalos, P.M.: An improvement on parametric \(\nu \)-support vector algorithm for classification. Ann. Oper. Res. 276(1–2), 155–168 (2019)
Kundakcioglu, O.E., Seref, O., Pardalos, P.M.: Multiple instance learning via margin maximization. Appl. Numer. Math. 60(4), 358–369 (2010)
Mangasarian, O.: A Newton method for linear programming. J. Optim. Theory Appl. 121(1), 1–18 (2004)
Mitchell, J.S., Suri, S.: Separation and approximation of polyhedral objects. Comput. Geom. 5(2), 95–114 (1995)
Nocedal, J., Wright, S.: Numer. Optim. Springer, New York (2006)
Pardalos, P.M.: Complexity Numer. Optim. World Scientific, Singapore (1993)
Pardalos, P.M., Ketabchi, S., Moosaei, H.: Minimum norm solution to the positive semidefinite linear complementarity problem. Optimization 63(3), 359–369 (2014)
Rudin, W.: Functional Analysis. McGraw-Hill, New York (1991)
Salahi, M., Ketabchi, S.: Correcting an inconsistent set of linear inequalities by the generalized Newton method. Optim. Methods Softw. 25(3), 457–465 (2010)
Wang, X.Y., Wang, T., Bu, J.: Color image segmentation using pixel wise support vector machine classification. Pattern Recogn. 44(4), 777–787 (2011)
Acknowledgments
H. Moosaei was supported by the Czech Science Foundation Grant 22-19353S. M. Hladík was supported by the Czech Science Foundation Grant P403-22-11117S.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Conflicts of Interest
The authors declare that they have no conflict of interest.
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Ketabchi, S., Moosaei, H., Guarracino, M.R., Hladík, M. (2022). Separating Two Polyhedra Utilizing Alternative Theorems and Penalty Function. In: Simos, D.E., Rasskazova, V.A., Archetti, F., Kotsireas, I.S., Pardalos, P.M. (eds) Learning and Intelligent Optimization. LION 2022. Lecture Notes in Computer Science, vol 13621. Springer, Cham. https://doi.org/10.1007/978-3-031-24866-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-24866-5_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-24865-8
Online ISBN: 978-3-031-24866-5
eBook Packages: Computer ScienceComputer Science (R0)