Skip to main content

Optimal Energy Management of Microgrid Using Multi-objective Optimisation Approach

  • Conference paper
  • First Online:
Learning and Intelligent Optimization (LION 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13621))

Included in the following conference series:

  • 715 Accesses

Abstract

The use of several distributed generators as well as the energy storage system in a local microgrid require an energy management system to maximize system efficiency, by managing generation and loads. The main purpose of this work is to find the optimal set-points of distributed generators and storage devices of a microgrid, minimizing simultaneously the energy costs and the greenhouse gas emissions. A multi-objective approach called Pareto-search Algorithm based on direct multi-search is proposed to ensure optimal management of the microgrid. According to the non-dominated resulting points, several scenarios are proposed and compared. The effectiveness of the algorithm is validated, giving a compromised choice between two criteria: energy cost and GHG emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Escrivani, G.R., Luna, A.S., Torres, A.R.: Operating parameters for bio-oil production in biomass pyrolysis: a review. J. Anal. Appl. Pyrol. 129, 134–149 (2018)

    Google Scholar 

  2. Vittal, H., Oldrich, R., Yannis, M.: Increased future occurrences of the exceptional 2018–2019 Central European drought under global warming. Sci. Rep. Nature Publisher Group 10(1)(2020)

    Google Scholar 

  3. Tsikalakis, A.G., Hatziargyriou, N.D.: Centralized control for optimizing microgrids operation. In: 2011 IEEE Power and Energy Society General Meeting. IEEE (2011)

    Google Scholar 

  4. Morais, H., Kádár, P., Faria, P., Vale, Z.A., Khodr, H.M.: Optimal scheduling of a renewable micro-grid in an isolated load area using mixed-integer linear programming. Renew. Energy 35(1), 151–156 (2010)

    Article  Google Scholar 

  5. Shahidehpour, S.M., Tong, S.K.: An overview of power generation scheduling in the optimal operation of a large scale power system. Electr. Mach. Power Syst. 19(6), 731–762 (1991)

    Article  Google Scholar 

  6. Jiayi, H., Chuanwen, J., Rong, X.: A review on distributed energy resources and MicroGrid. Renew. Sustain. Energy Rev. 12(9), 2472–2483 (2008)

    Article  Google Scholar 

  7. Voumvoulakis, E., Skotinos, I., Tsouchakinas, A.: Transient analysis of microgrids in Grid-connected and islanded mode of Operation. Fuel 2, 30 (2004)

    Google Scholar 

  8. Lund, P.D., et al.: Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renew. Sustain. Energy Rev. 45, 785–807 (2015)

    Google Scholar 

  9. Mohamed, F.A., Koivo, H.N.: Online management genetic algorithms of microgrid for residential application. Energy Convers. Manage. 64, 562–568 (2012)

    Article  Google Scholar 

  10. Liu, Z., Chen, C., Yuan, J.: Hybrid energy scheduling in a renewable micro grid. Appl. Sci. 5(3), 516–531 (2015)

    Article  Google Scholar 

  11. Kani, S.A.P., Colson, C.M., Nehrir, H., Wang, C.: Real-time energy management of a stand-alone hybrid wind-microturbine energy system using particle swarm optimization. IEEE Trans. Sustain. Energy 3, 193–201 (2010)

    Google Scholar 

  12. Granelli, G., Montagna, M., Pasini, G., Marannino, P.: Emission constrained dynamic dispatch. Electric Power Sys. 24, 56–64 (1992)

    Google Scholar 

  13. Motevasel, M., Seif, A.R.: Expert energy management of a micro-grid considering wind energy uncertainty. Energy Convers. Manage. 83, 58–72 (2014)

    Article  Google Scholar 

  14. Moghaddam, A.A., Seif, A., Niknam, T., Pahlavani, M.R.A.: Multi-objective operation management of a renewable mg (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source. Energy 36, 6490–6507 (2011)

    Article  Google Scholar 

  15. Chen, C., Cai, D., Hu, L.: Smart energy management system for optimal microgrid economic operation. IET Renew. Power Gener. 5, 258–267 (2011)

    Google Scholar 

  16. Chen, J., Wang, C., Zhao, B., Zhang, X.: Economic operation optimization of a stand-alone microgrid system considering characteristics of energy storage system. Electric Power Syst. 6, 25–31 (2012)

    Google Scholar 

  17. Hossain, M.A., Pota, H.R., Squartini, S., Abdou, A.F.: Modified PSO algorithm for real-time energy management in grid-connected microgrids. Renew. Energy 136, 746–757 (2018)

    Article  Google Scholar 

  18. Moghaddam, A.A., et al.: Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source. Energy 36(11), 6490–6507 (2011)

    Google Scholar 

  19. Lin, C., Gen, M.: Multi-criteria human resource allocation for solving multistage combinatorial optimization problems using multiobjective hybrid genetic algorithm. Expert Syst. Appl. 34, 2480–2490 (2008)

    Article  Google Scholar 

  20. Audet, C., Dennis, E.: Analysis of generalized pattern searches. SIAM J. Optim. 13, 889–903 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chang, P., Chen, S., Liu, C.: Sub-population genetic algorithm with mining gene structures for multiobjective flowshop scheduling problems. Expert Syst. Appl. 33, 762–771 (2007)

    Article  Google Scholar 

  22. Audet, C., Dennis, E.: Mesh adaptive direct search algorithms for constrained optimization. SIAM J. Optim. 17, 188–217 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Amoura, Y., Pereira, A.I., Lima, J., Ferreira, A., Boukli-hacene, F.: Optimal energy management of a microgrid system. In: Symposium of Applied Science for Young Researchers SASYR (2021)

    Google Scholar 

  24. Amoura, Y., Pereira, A.I., Lima, J.: A short term wind speed forecasting model using artificial neural network and adaptive neuro-fuzzy inference system models. In: International Conference on Sustainable Energy for Smart Cities (2021)

    Google Scholar 

  25. Amoura, Y., Ferreira, A., Lima, J., Pereira, A.I.: Optimal sizing of a hybrid energy system based on renewable energy using evolutionary optimization algorithms. In: International Conference on Optimization, Learning Algorithms and Applications (2021)

    Google Scholar 

  26. Amoura, Y., Pereira, A.I, Lima, J.: Optimization methods for energy management in a microgrid system considering wind uncertainty data. In: Proceedings of International Conference on Communication and Computational Technologies (2021)

    Google Scholar 

  27. Amoura, Y., Pereira, A.I., Lima, J., Ferreira, A., Boukli-hacene, F., Kerboua, A.: Smart Microgrid Management: a Hybrid Optimisation Approach, Preprint on Energy Sustainability and Society

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahia Amoura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amoura, Y., Pereira, A.I., Lima, J., Ferreira, Â., Boukli-Hacene, F. (2022). Optimal Energy Management of Microgrid Using Multi-objective Optimisation Approach. In: Simos, D.E., Rasskazova, V.A., Archetti, F., Kotsireas, I.S., Pardalos, P.M. (eds) Learning and Intelligent Optimization. LION 2022. Lecture Notes in Computer Science, vol 13621. Springer, Cham. https://doi.org/10.1007/978-3-031-24866-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24866-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24865-8

  • Online ISBN: 978-3-031-24866-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics