Skip to main content

Synthesizing History and Prophecy Variables for Symbolic Model Checking

  • Conference paper
  • First Online:
Verification, Model Checking, and Abstract Interpretation (VMCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13881))

  • 719 Accesses

Abstract

Introduction of history and prophecy variables can allow a proof to be expressed in a weaker logic or a more localized form. This fact has been used, for example, to allow purely propositional, quantifier-free, invariant generators to produce proofs for parameterized systems requiring universal quantification in the inductive invariant. However, automatic synthesis of history and prophecy variables remains an open problem. We introduce counterexample-guided heuristics for this purpose based on property-driven refutation of counterexamples and Craig interpolation. The approach is evaluated on a set of benchmarks based on array manipulating programs with multiple loops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The code and instructions for reproducing our results is available at https://github.com/cvick32/ConditionalHistory. Including our tool code and the benchmark transformation code there are roughly 3800 SLOC in Python.

  2. 2.

    For a benchmark-by-benchmark comparison of all the tools that were evaluated, see. https://github.com/cvick32/ConditionalHistory/tree/main/paper-results.

References

  1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theoret. Comput. Sci. 82(2), 253–284 (1991)

    Article  MathSciNet  Google Scholar 

  2. Bjørner, N., McMillan, K., Rybalchenko, A.: On solving universally quantified horn clauses. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 105–125. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38856-9_8

    Chapter  Google Scholar 

  3. Chou, C.-T., Mannava, P.K., Park, S.: A simple method for parameterized verification of cache coherence protocols. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 382–398. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30494-4_27

    Chapter  Google Scholar 

  4. Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: an interpolating SMT solver. In: Donaldson, A., Parker, D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 248–254. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31759-0_19

    Chapter  Google Scholar 

  5. Cobleigh, J.M., Giannakopoulou, D., PĂsĂreanu, C.S.: Learning assumptions for compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 331–346. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36577-X_24

    Chapter  Google Scholar 

  6. Daniel, J., Cimatti, A., Griggio, A., Tonetta, S., Mover, S.: Infinite-state liveness-to-safety via implicit abstraction and well-founded relations. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 271–291. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4_15

    Chapter  Google Scholar 

  7. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  8. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. J. ACM 52(3), 365–473 (2005)

    Article  MathSciNet  Google Scholar 

  9. Fedyukovich, G., Prabhu, S., Madhukar, K., Gupta, A.: Quantified invariants via syntax-guided synthesis. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 259–277. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_14

    Chapter  Google Scholar 

  10. Ghilardi, S., Ranise, S.: Backward reachability of array-based systems by SMT solving: Termination and invariant synthesis. Log. Methods Comput. Sci. 6(4) (2010)

    Google Scholar 

  11. Goel, A., Sakallah, K.: On symmetry and quantification: a new approach to verify distributed protocols. In: Dutle, A., Moscato, M.M., Titolo, L., Muñoz, C.A., Perez, I. (eds.) NFM 2021. LNCS, vol. 12673, pp. 131–150. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76384-8_9

    Chapter  Google Scholar 

  12. Gurfinkel, A., Shoham, S., Meshman, Y.: SMT-based verification of parameterized systems. In: Zimmermann, T., Cleland-Huang, J., Su, Z. (eds.) Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, 13–18 November 2016, pp. 338–348. ACM (2016)

    Google Scholar 

  13. Gurfinkel, A., Shoham, S., Vizel, Y.: Quantifiers on demand. CoRR, abs/2106.00664 (2021)

    Google Scholar 

  14. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In: Jones, N.D., Leroy, X. (eds.) Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2004, Venice, Italy, 14–16 January 2004, pp. 232–244. ACM (2004)

    Google Scholar 

  15. Karbyshev, A., Bjørner, N.S., Itzhaky, S., Rinetzky, N., Shoham, S.: Property-directed inference of universal invariants or proving their absence. J. ACM 64(1), 7:1–7:33 (2017)

    Google Scholar 

  16. Koenig, J.R., Padon, O., Immerman, N., Aiken, A.: First-order quantified separators. In: Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2020, New York, NY, USA, pp. 703–717. Association for Computing Machinery (2020)

    Google Scholar 

  17. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive programs (2014)

    Google Scholar 

  18. Krishnan, H.G.V., Gurfinkel, A.: CHC-COMP 2020 submission (2020)

    Google Scholar 

  19. Lahiri, S.K., Bryant, R.E.: Constructing quantified invariants via predicate abstraction. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 267–281. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0_22

    Chapter  Google Scholar 

  20. Mann, M., Irfan, A., Griggio, A., Padon, O., Barrett, C.: Counterexample-guided prophecy for model checking modulo the theory of arrays. In: TACAS 2021. LNCS, vol. 12651, pp. 113–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72016-2_7

    Chapter  Google Scholar 

  21. McMillan, K.L.: Circular compositional reasoning about liveness. In: Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 342–346. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48153-2_30

    Chapter  Google Scholar 

  22. McMillan, K.L.: Verification of infinite state systems by compositional model checking. In: Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 219–237. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48153-2_17

    Chapter  Google Scholar 

  23. McMillan, K.L.: Parameterized verification of the FLASH cache coherence protocol by compositional model checking. In: Margaria, T., Melham, T. (eds.) CHARME 2001. LNCS, vol. 2144, pp. 179–195. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44798-9_17

    Chapter  Google Scholar 

  24. McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1), 101–121 (2005)

    Article  MathSciNet  Google Scholar 

  25. McMillan, K.L.: Eager abstraction for symbolic model checking. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 191–208. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_11

    Chapter  Google Scholar 

  26. Monniaux, D., Gonnord, L.: Cell morphing: from array programs to array-free horn clauses. In: Rival, X. (ed.) SAS 2016. LNCS, vol. 9837, pp. 361–382. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53413-7_18

    Chapter  Google Scholar 

  27. Owicki, S.S., Gries, D.: Verifying properties of parallel programs: An axiomatic approach. Commun. ACM 19(5), 279–285 (1976)

    Article  MathSciNet  Google Scholar 

  28. Pnueli, A., Ruah, S., Zuck, L.: Automatic deductive verification with invisible invariants. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 82–97. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45319-9_7

    Chapter  Google Scholar 

  29. Rümmer, P.: Competition report: CHC-COMP-20. Electron. Proc. Theor. Comput. Sci. 320, 197–219 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vick, C., McMillan, K.L. (2023). Synthesizing History and Prophecy Variables for Symbolic Model Checking. In: Dragoi, C., Emmi, M., Wang, J. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2023. Lecture Notes in Computer Science, vol 13881. Springer, Cham. https://doi.org/10.1007/978-3-031-24950-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24950-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24949-5

  • Online ISBN: 978-3-031-24950-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics