Skip to main content

ARENA: Enhancing Abstract Refinement for Neural Network Verification

  • Conference paper
  • First Online:
Verification, Model Checking, and Abstract Interpretation (VMCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13881))

Abstract

As neural networks have taken on a critical role in real-world applications, formal verification is earnestly needed to guarantee the safety properties of the networks. However, it remains challenging to balance the trade-off between precision and efficiency in abstract interpretation based verification methods. In this paper, we propose an abstract refinement process that leverages the convex hull techniques to improve the analysis efficiency. Specifically, we introduce the double description method in the convex polytope domain to detect and eliminate multiple spurious adversarial labels simultaneously. We also combine the new activation relaxation technique with the iterative abstract refinement method to compensate for the precision loss during abstract interpretation. We have implemented our proposal into a verification framework named ARENA, and assessed its effectiveness by conducting a series of experiments. These experiments show that ARENA yields significantly better verification precision compared to the existing abstract-refinement-based tool DeepSRGR. It also identifies falsification by detecting adversarial examples, with reasonable execution efficiency. Lastly, it verifies more images than the state-of-the-art verifier PRIMA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Unstable ReLU neuron refers to a ReLU neuron whose input range can be both negative and positive (like \(y_2, y_3\)).

  2. 2.

    https://github.com/cddlib/cddlib.

  3. 3.

    We explain our parameter range setting in Sect. 5 and also provide the batch size study experiments in Sect. 4.4.

  4. 4.

    https://www.gurobi.com/.

  5. 5.

    A trained defense refers to a defense method against adversarial samples, with the purpose of improving the robustness property of the network.

References

  1. Ren, K., Zheng, T., Qin, Z., Liu, X.: Adversarial attacks and defenses in deep learning. Engineering 6(3), 346–360 (2020)

    Article  Google Scholar 

  2. Yuan, X., He, P., Zhu, Q., Li, X.: Adversarial examples: attacks and defenses for deep learning. IEEE Trans. Neural Netw. Learn. Syst. 30(9), 2805–2824 (2019)

    Article  MathSciNet  Google Scholar 

  3. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with mixed integer programming. In: International Conference on Learning Representations (ICLR). OpenReview.net (2019)

    Google Scholar 

  4. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_5

    Chapter  Google Scholar 

  5. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of artificial neural networks. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 243–257. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_24

    Chapter  Google Scholar 

  6. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev, M.: AI2: safety and robustness certification of neural networks with abstract interpretation. In: IEEE Symposium on Security and Privacy (SP), pp. 3–18. IEEE Computer Society (2018)

    Google Scholar 

  7. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying neural networks. Proc. ACM Program. Lang. 3(POPL), 41:1–41:30 (2019)

    Google Scholar 

  8. Singh, G., Ganvir, R., Püschel, M., Vechev, M.T.: Beyond the single neuron convex barrier for neural network certification. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R., (eds.) Advances in Neural Information Processing Systems, vol. 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8–14, 2019, Vancouver, BC, Canada, pp. 15072–15083 (2019)

    Google Scholar 

  9. Müller, M.N., Makarchuk, G., Singh, G., Püschel, M., Vechev, M.T.: PRIMA: general and precise neural network certification via scalable convex hull approximations. Proc. ACM Program. Lang. 6(POPL), 1–33 (2022)

    Google Scholar 

  10. Yang, P.: Improving neural network verification through spurious region guided refinement. In: Groote, J.F., Larsen, K.G. (eds.) TACAS 2021. LNCS, vol. 12651, pp. 389–408. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72016-2_21

    Chapter  Google Scholar 

  11. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/10722167_15

    Chapter  Google Scholar 

  12. Fukuda, K., Prodon, A.: Double description method revisited. In: Deza, M., Euler, R., Manoussakis, I. (eds.) CCS 1995. LNCS, vol. 1120, pp. 91–111. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61576-8_77

    Chapter  Google Scholar 

  13. CMU. Alpha-Beta-CROWN: a fast and scalable neural network verifier with efficient bound propagation (2022). https://github.com/huanzhang12/alpha-beta-CROWN. Accessed 11 Aug 2022

  14. McMullen, P.: Convex polytopes, by Branko Grunbaum, second edition (first edition (1967) written with the cooperation of V. L. Klee, M. Perles and G. C. Shephard. Comb. Probab. Comput. 14(4), 623–626 (2005)

    Google Scholar 

  15. ETH. ETH Robustness Analyzer for Neural Networks (ERAN) (2022). https://github.com/eth-sri/eran. Accessed 11 Aug 2022

  16. 3rd International Verification of Neural Networks Competition (VNN-COMP’22) (2022). https://sites.google.com/view/vnn2022. Accessed 11 Aug 2022

  17. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010)

    Google Scholar 

  18. Krizhevsky, A., Nair, V., Hinton, G.: Cifar-10 (Canadian institute for advanced research)

    Google Scholar 

  19. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: IEEE Symposium on Security and Privacy (SP), pp. 39–57 (2017)

    Google Scholar 

  20. Mirman, M., Gehr, T., Vechev, M.T.: Differentiable abstract interpretation for provably robust neural networks. In: International Conference on Machine Learning (ICML), pp. 3575–3583 (2018)

    Google Scholar 

  21. Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., Misener, R.: Efficient verification of relu-based neural networks via dependency analysis. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, 7–12 February 2020, pp. 3291–3299. AAAI Press (2020)

    Google Scholar 

  22. Wang, S.: Beta-crown: efficient bound propagation with per-neuron split constraints for complete and incomplete neural network verification. CoRR, abs/2103.06624 (2021)

    Google Scholar 

  23. Zhang, H., Weng, T.W., Chen, P.Y., Hsieh, C.J., Daniel, L.: Efficient neural network robustness certification with general activation functions. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R., (eds.) Advances in Neural Information Processing Systems Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3–8 December 2018, Montréal, Canada, vol. 31, pp. 4944–4953 (2018)

    Google Scholar 

  24. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of neural networks using symbolic intervals. In: Enck, W., Felt, A.P., (eds.) 27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA, 15–17 August 2018, pp. 1599–1614. USENIX Association (2018)

    Google Scholar 

Download references

Acknowledgement

This research is supported by a Singapore Ministry of Education Academic Research Fund Tier 1 T1-251RES2103. The second author is supported by a Singapore National Research Foundation Grant R-252-000-B90-279 for the project Singapore Blockchain Innovation Programme. We are grateful to Julian Rüth saraedum and Komei Fukuda for their prompt answer to our queries on cddlib. And we appreciate Mark Niklas Müller’s assistance to our queries on PRIMA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuyi Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhong, Y., Ta, QT., Khoo, SC. (2023). ARENA: Enhancing Abstract Refinement for Neural Network Verification. In: Dragoi, C., Emmi, M., Wang, J. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2023. Lecture Notes in Computer Science, vol 13881. Springer, Cham. https://doi.org/10.1007/978-3-031-24950-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24950-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24949-5

  • Online ISBN: 978-3-031-24950-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics