Skip to main content

SMT-Based Modeling and Verification of Spiking Neural Networks: A Case Study

  • Conference paper
  • First Online:
Verification, Model Checking, and Abstract Interpretation (VMCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13881))

  • 517 Accesses

Abstract

In this paper, we present a case study on modeling and verification of Spiking Neural Networks (SNN) using Satisfiability Modulo Theory (SMT) solvers. SNN are special neural networks that have great similarity in their architecture and operation with the human brain. These networks have shown similar performance when compared to traditional networks with comparatively lesser energy requirement. We discuss different properties of SNNs and their functioning. We then use Z3, a popular SMT solver to encode the network and its properties. Specifically, we use the theory of Linear Real Arithmetic (LRA). Finally, we present a framework for verification and adversarial robustness analysis and demonstrate it on the Iris and MNIST benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Code and Benchmarks. https://github.com/Soham-Banerjee/SMT-Encoding-for-Spiking-Neural-Network

  2. Alur, R.: Timed automata. In: Peled, D. (ed.) CAV 1999. LNCS, vol. 1633, pp. 8–22. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48683-6_3

    Chapter  Google Scholar 

  3. Aman, B., Ciobanu, G.: Modelling and verification of weighted spiking neural systems. Theoret. Comput. Sci. 623, 92–102 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. De Maria, E., Di Giusto, C., Laversa, L.: Spiking neural networks modelled as timed automata with parameter learning (2018)

    Google Scholar 

  5. De Maria, E., Muzy, A., Gaffé, D., Ressouche, A., Grammont, F.: Verification of temporal properties of neuronal archetypes modeled as synchronous reactive systems. In: Cinquemani, E., Donzé, A. (eds.) HSB 2016. LNCS, vol. 9957, pp. 97–112. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47151-8_7

    Chapter  MATH  Google Scholar 

  6. Demin, V., Nekhaev, D.: Recurrent spiking neural network learning based on a competitive maximization of neuronal activity. Front. Neuroinf. 12, 79 (2018)

    Article  Google Scholar 

  7. Deng, L.: The MNIST database of handwritten digit images for machine learning research. IEEE Signal Process. Mag. 29(6), 141–142 (2012)

    Article  Google Scholar 

  8. Diehl, P.U., Cook, M.: Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9, 99 (2015)

    Article  Google Scholar 

  9. Ding, J., Yu, Z., Tian, Y., Huang, T.: Optimal ANN-SNN conversion for fast and accurate inference in deep spiking neural networks (2021)

    Google Scholar 

  10. Elboher, Y.Y., Gottschlich, J., Katz, G.: An abstraction-based framework for neural network verification. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 43–65. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8_3

    Chapter  MATH  Google Scholar 

  11. Eshraghian, J.K., et al.: Training spiking neural networks using lessons from deep learning (2021)

    Google Scholar 

  12. Fisher, R.: Iris. UCI Machine Learning Repository (1988). https://archive.ics.uci.edu/ml/datasets/Iris

  13. Gokulanathan, S., Feldsher, A., Malca, A., Barrett, C., Katz, G.: Simplifying neural networks using formal verification. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds.) NFM 2020. LNCS, vol. 12229, pp. 85–93. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55754-6_5

    Chapter  Google Scholar 

  14. Goldberger, B., Katz, G., Adi, Y., Keshet, J.: Minimal modifications of deep neural networks using verification. In: LPAR23. LPAR-23: 23rd International Conference on Logic for Programming, Artificial Intelligence and Reasoning, vol. 73, pp. 260–278 (2020)

    Google Scholar 

  15. Guo, W., Fouda, M.E., Eltawil, A.M., Salama, K.N.: Neural coding in spiking neural networks: a comparative study for robust neuromorphic systems. Front. Neurosci. 15, 638474 (2021)

    Article  Google Scholar 

  16. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: a calculus for reasoning about deep neural networks. Formal Methods Syst. Design 1–30 (2021)

    Google Scholar 

  17. Kim, T., et al.: Spiking neural network (SNN) with memristor synapses having non-linear weight update. Front. Comput. Neurosci. 15, 646125 (2021)

    Article  Google Scholar 

  18. Kuper, L., Katz, G., Gottschlich, J., Julian, K., Barrett, C., Kochenderfer, M.: Toward scalable verification for safety-critical deep networks (2018)

    Google Scholar 

  19. Lahav, O., Katz, G.: Pruning and slicing neural networks using formal verification (2021)

    Google Scholar 

  20. Li, S., Zhang, Z., Mao, R., Xiao, J., Chang, L., Zhou, J.: A fast and energy-efficient SNN processor with adaptive clock/event-driven computation scheme and online learning. IEEE Trans. Circuits Syst. I Regul. Pap. 68(4), 1543–1552 (2021)

    Article  Google Scholar 

  21. Liu, T.Y., Mahjoubfar, A., Prusinski, D., Stevens, L.: Neuromorphic computing for content-based image retrieval. PLOS One 17(4), 1–13 (2022). https://doi.org/10.1371/journal.pone.0264364

    Article  Google Scholar 

  22. Malik, N.: Artificial neural networks and their applications (2005)

    Google Scholar 

  23. de Maria, E., Gaffé, D., Ressouche, A., Girard Riboulleau, C.: A model-checking approach to reduce spiking neural networks. In: BIOINFORMATICS 2018 - 9th International Conference on Bioinformatics Models, Methods and Algorithms, pp. 1–8 (2018)

    Google Scholar 

  24. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  25. Stimberg, M., Brette, R., Goodman, D.F.: Brian 2, an intuitive and efficient neural simulator. eLife 8, e47314 (2019)

    Google Scholar 

  26. Tavanaei, A., Ghodrati, M., Kheradpisheh, S.R., Masquelier, T., Maida, A.S.: Deep learning in spiking neural networks (2018)

    Google Scholar 

  27. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with mixed integer programming (2017)

    Google Scholar 

  28. Yu, Z., Abdulghani, A.M., Zahid, A., Heidari, H., Imran, M.A., Abbasi, Q.H.: An overview of neuromorphic computing for artificial intelligence enabled hardware-based hopfield neural network. IEEE Access 8, 67085–67099 (2020). https://doi.org/10.1109/ACCESS.2020.2985839

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansuman Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Banerjee, S., Ghosh, S., Banerjee, A., Mohalik, S.K. (2023). SMT-Based Modeling and Verification of Spiking Neural Networks: A Case Study. In: Dragoi, C., Emmi, M., Wang, J. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2023. Lecture Notes in Computer Science, vol 13881. Springer, Cham. https://doi.org/10.1007/978-3-031-24950-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24950-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24949-5

  • Online ISBN: 978-3-031-24950-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics