Abstract
Facial landmark detection plays an important role for the similarity analysis in artworks to compare portraits of the same or similar artists. With facial landmarks, portraits of different genres, such as paintings and prints, can be automatically aligned using control-point-based image registration. We propose a deep-learning-based method for facial landmark detection in high-resolution images of paintings and prints. It divides the task into a global network for coarse landmark prediction and multiple region networks for precise landmark refinement in regions of the eyes, nose, and mouth that are automatically determined based on the predicted global landmark coordinates. We created a synthetically augmented facial landmark art dataset including artistic style transfer and geometric landmark shifts. Our method demonstrates an accurate detection of the inner facial landmarks for our high-resolution dataset of artworks while being comparable for a public low-resolution artwork dataset in comparison to competing methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: optimal speed and accuracy of object detection (2020). https://doi.org/10.48550/ARXIV.2004.10934
Bulat, A., Tzimiropoulos, G.: How far are we from solving the 2D & 3D face alignment problem? (and a dataset of 230,000 3D facial landmarks). In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 1021–1030 (2017). https://doi.org/10.1109/ICCV.2017.116
Chandran, P., Bradley, D., Gross, M., Beeler, T.: Attention-driven cropping for very high resolution facial landmark detection. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5860–5869 (2020). https://doi.org/10.1109/CVPR42600.2020.00590
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981). https://doi.org/10.1145/358669.358692
Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic style (2015). https://doi.org/10.48550/ARXIV.1508.06576
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90
He, K., Xue, X.: Facial landmark localization by part-aware deep convolutional network. Adv. Multimedia Inf. Process. - PCM 2016, 22–31 (2016). https://doi.org/10.1007/978-3-319-48890-5_3
Honari, S., Molchanov, P., Tyree, S., Vincent, P., Pal, C., Kautz, J.: Improving landmark localization with semi-supervised learning. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1546–1555 (2018). https://doi.org/10.1109/CVPR.2018.00167
Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 1501–1510 (2017). https://doi.org/10.1109/ICCV.2017.167
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
Kazemi, V., Sullivan, J.: One millisecond face alignment with an ensemble of regression trees. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1867–1874 (2014). https://doi.org/10.1109/CVPR.2014.241
Kordon, F., Maier, A., Kunze, H.: Latent shape constraint for anatomical landmark detection on spine radiographs. Bildverarbeitung für die Medizin 2021, 350–355 (2021). https://doi.org/10.1007/978-3-658-33198-6_85
Kowalski, M., Naruniec, J., Trzcinski, T.: Deep alignment network: a convolutional neural network for robust face alignment. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 2034–2043 (2017). https://doi.org/10.1109/CVPRW.2017.254
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Madhu, P., et al.: Enhancing Human Pose Estimation in Ancient Vase Paintings via Perceptually-grounded Style Transfer Learning. arXiv:2012.05616 (2020)
Nibali, A., He, Z., Morgan, S., Prendergast, L.: Numerical Coordinate Regression with Convolutional Neural Networks. arXiv:1801.07372 (2018)
Nichol, K.: Painter by Numbers, WikiArt (2016). https://www.kaggle.com/c/painter-by-numbers
Robinson, J.P., Li, Y., Zhang, N., Fu, Y., Tulyakov, S.: Laplace landmark localization. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10102–10111 (2019). https://doi.org/10.1109/ICCV.2019.01020
Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: 300 faces in-the-wild challenge: the first facial landmark localization challenge. In: 2013 IEEE International Conference on Computer Vision (ICCV) Workshops, pp. 397–403 (2013). https://doi.org/10.1109/ICCVW.2013.59
Sindel, A., Maier, A., Christlein, V.: Art2Contour: salient contour detection in artworks using generative adversarial networks. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 788–792 (2020). https://doi.org/10.1109/ICIP40778.2020.9191117
Stricker, M., Augereau, O., Kise, K., Iwata, M.: Facial Landmark Detection for Manga Images (2018). https://doi.org/10.48550/ARXIV.1811.03214
Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5686–5696 (2019). https://doi.org/10.1109/CVPR.2019.00584
Sun, K., et al.: High-resolution representations for labeling pixels and regions (2019). https://doi.org/10.48550/ARXIV.1904.04514
Sun, Y., Wang, X., Tang, X.: Deep convolutional network cascade for facial point detection. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3476–3483 (2013). https://doi.org/10.1109/CVPR.2013.446
Wang, X., Bo, L., Fuxin, L.: Adaptive wing loss for robust face alignment via heatmap regression. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6970–6980 (2019). https://doi.org/10.1109/ICCV.2019.00707
Wu, Y., Ji, Q.: Facial landmark detection: a literature survey. Int. J. Comput. Vision 127(2), 115–142 (2018). https://doi.org/10.1007/s11263-018-1097-z
Yaniv, J., Newman, Y., Shamir, A.: The face of art: landmark detection and geometric style in portraits. ACM Trans. Graph. 38(4) (2019). https://doi.org/10.1145/3306346.3322984
Zhang, Z., Luo, P., Loy, C.C., Tang, X.: Facial landmark detection by deep multi-task learning. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 94–108. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_7
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251 (2017). https://doi.org/10.1109/ICCV.2017.244
Acknowledgement
Thanks to Daniel Hess, Oliver Mack, Daniel Görres, Wibke Ottweiler, GNM, and Gunnar Heydenreich, CDA, and Thomas Klinke, TH Köln, and Amalie Hänsch, FAU Erlangen-Nürnberg for providing image data, and to Leibniz Society for funding the research project “Critical Catalogue of Luther portraits (1519–1530)” with grant agreement No. SAW-2018-GNM-3-KKLB, to the European Union’s Horizon 2020 research and innovation programme within the Odeuropa project under grant agreement No. 101004469 for funding this publication, and to NVIDIA for their GPU hardware donation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sindel, A., Maier, A., Christlein, V. (2023). ArtFacePoints: High-Resolution Facial Landmark Detection in Paintings and Prints. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13801. Springer, Cham. https://doi.org/10.1007/978-3-031-25056-9_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-25056-9_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25055-2
Online ISBN: 978-3-031-25056-9
eBook Packages: Computer ScienceComputer Science (R0)