Skip to main content

CubeSat-CDT: A Cross-Domain Dataset for 6-DoF Trajectory Estimation of a Symmetric Spacecraft

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Abstract

This paper introduces a new cross-domain dataset, CubeSat-CDT, that includes 21 trajectories of a real CubeSat acquired in a laboratory setup, combined with 65 trajectories generated using two rendering engines – i.e. Unity and Blender. The three data sources incorporate the same 1U CubeSat and share the same camera intrinsic parameters. In addition, we conduct experiments to show the characteristics of the dataset using a novel and efficient spacecraft trajectory estimation method, that leverages the information provided from the three data domains. Given a video input of a target spacecraft, the proposed end-to-end approach relies on a Temporal Convolutional Network that enforces the inter-frame coherence of the estimated 6-Degree-of-Freedom spacecraft poses. The pipeline is decomposed into two stages; first, spatial features are extracted from each frame in parallel; second, these features are lifted to the space of camera poses while preserving temporal information. Our results highlight the importance of addressing the domain gap problem to propose reliable solutions for close-range autonomous relative navigation between spacecrafts. Since the nature of the data used during training impacts directly the performance of the final solution, the CubeSat-CDT dataset is provided to advance research into this direction.

This work was funded by the Luxembourg National Research Fund (FNR), under the project reference BRIDGES2020/IS/14755859/MEET-A/Aouada, and by LMO (https://www.lmo.space).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blender 3.0 reference manual - blender manual. https://docs.blender.org/manual/en/latest/index.html

  2. Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv:1803.01271 (2018)

  3. Biesbroek, R., Aziz, S., Wolahan, A., Cipolla, S., Richard-Noca, M., Piguet, L.: The clearspace-1 mission: ESA and clearspace team up to remove debris. In: Proceedings of 8th European Conference on Space Debris, pp. 1–3 (2021)

    Google Scholar 

  4. Black, K., Shankar, S., Fonseka, D., Deutsch, J., Dhir, A., Akella, M.R.: Real-time, flight-ready, non-cooperative spacecraft pose estimation using monocular imagery. arXiv preprint arXiv:2101.09553 (2021)

  5. Corona, E., Kundu, K., Fidler, S.: Pose estimation for objects with rotational symmetry. In: IEEE International Conference on Intelligent Robots and Systems, pp. 7215–7222, December 2018. https://doi.org/10.1109/IROS.2018.8594282

  6. D’Amico, S., Bodin, P., Delpech, M., Noteborn, R.: Prisma. In: D’Errico, M. (eds) Distributed Space Missions for Earth System Monitoring. Space Technology Library, vol. 31, pp. pp. 599–637. Springer, New York, NY (2013). https://doi.org/10.1007/978-1-4614-4541-8_21

  7. Dung, H.A., Chen, B., Chin, T.J.: A spacecraft dataset for detection, segmentation and parts recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 2012–2019, June 2021

    Google Scholar 

  8. Garcia, A., Musallam, M.A., Gaudilliere, V., Ghorbel, E., Al Ismaeil, K., Perez, M., Aouada, D.: LSPNet: a 2d localization-oriented spacecraft pose estimation neural network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 2048–2056, June 2021

    Google Scholar 

  9. GSFC: NASA’s Exploration & In-space Service. NASA. https://nexis.gsfc.nasa.gov/

  10. Haas, J.K.: A history of the unity game engine (2014)

    Google Scholar 

  11. Holschneider, M., Kronland-Martinet, R., Morlet, J., Tchamitchian, P.: A real-time algorithm for signal analysis with the help of the wavelet transform. In: Combes, J.M., Grossmann, A., Tchamitchian, P. (eds) Wavelets. IPTI, pp. 286–297. Springer, Heidelberg (1990). https://doi.org/10.1007/978-3-642-97177-8_28

  12. Hu, J., Ling, H., Parashar, P., Naik, A., Christensen, H.I.: Pose estimation of specular and symmetrical objects. CoRR abs/2011.00372 (2020)

    Google Scholar 

  13. Hu, Y., Speierer, S., Jakob, W., Fua, P., Salzmann, M.: Wide-depth-range 6d object pose estimation in space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15870–15879 (2021)

    Google Scholar 

  14. Kendall, A., Grimes, M., Cipolla, R.: Posenet: a convolutional network for real-time 6-DOF camera relocalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2938–2946 (2015)

    Google Scholar 

  15. Kisantal, M., Sharma, S., Park, T.H., Izzo, D., Märtens, M., D’Amico, S.: Satellite pose estimation challenge: dataset, competition design, and results. IEEE Trans. Aerosp. Electron. Syst. 56(5), 4083–4098 (2020)

    Article  Google Scholar 

  16. Lepetit, V., Fua, P.: Monocular model-based 3d tracking of rigid objects: a survey. Found. Trends Comput. Graph. Vis. 1(1), 1–89 (2005)

    Article  Google Scholar 

  17. Marchand, E., Chaumette, F., Chabot, T., Kanani, K., Pollini, A.: Removedebris vision-based navigation preliminary results. In: IAC 2019–70th International Astronautical Congress, pp. 1–10 (2019)

    Google Scholar 

  18. Mishra, N., Rohaninejad, M., Chen, X., Abbeel, P.: A simple neural attentive meta-learner (2017)

    Google Scholar 

  19. Musallam, M.A., del Castillo, M.O., Al Ismaeil, K., Perez, M.D., Aouada, D.: Leveraging temporal information for 3d trajectory estimation of space objects. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, pp. 3816–3822, October 2021

    Google Scholar 

  20. Musallam, M.A., et al.: Spacecraft recognition leveraging knowledge of space environment: simulator, dataset, competition design and analysis. In: 2021 IEEE International Conference on Image Processing Challenges (ICIPC), pp. 11–15. IEEE (2021)

    Google Scholar 

  21. Park, T.H., Märtens, M., Lecuyer, G., Izzo, D., D’Amico, S.: Speed+: next generation dataset for spacecraft pose estimation across domain gap. arXiv preprint arXiv:2110.03101 (2021)

  22. Park, T.H., Sharma, S., D’Amico, S.: Towards robust learning-based pose estimation of noncooperative spacecraft. arXiv preprint arXiv:1909.00392 (2019)

  23. Pauly, L., et al.: Lessons from a space lab - an image acquisition perspective (2022). https://doi.org/10.48550/ARXIV.2208.08865, arxiv.org:2208.08865

  24. Pellacani, A., Graziano, M., Fittock, M., Gil, J., Carnelli, I.: Hera vision based GNC and autonomy. In: 8th European Conference For Aeronautics and SP (2019). https://doi.org/10.13009/EUCASS2019-39

  25. Pitteri, G., Ramamonjisoa, M., Ilic, S., Lepetit, V.: On object symmetries and 6d pose estimation from images. In: 2019 International Conference on 3D Vision, 3DV 2019, Québec City, QC, Canada, 16–19 September 2019. pp. 614–622. IEEE (2019)

    Google Scholar 

  26. Proença, P.F., Gao, Y.: Deep learning for spacecraft pose estimation from photorealistic rendering. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 6007–6013. IEEE (2020)

    Google Scholar 

  27. Robots, U.: Ur10. https://www.universal-robots.com/products/ur10-robot/. Accessed on 11 March 2022

  28. Taketomi, T., Uchiyama, H., Ikeda, S.: Visual SLAM algorithms: a survey from 2010 to 2016. IPSJ Trans. Comput. Vision App. 9(1), 1–11 (2017). https://doi.org/10.1186/s41074-017-0027-2

    Article  Google Scholar 

  29. Tan, M., Le, Q.V.: Efficientnet: Rethinking model scaling for convolutional neural networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9–15 June 2019, Long Beach, California, USA. Proceedings of Machine Learning Research, vol. 97, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  30. University, S.: Space rendezvous laboratory. https://damicos.people.stanford.edu/. Accessed 11 March 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Adel Musallam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Musallam, M.A., Rathinam, A., Gaudillière, V., Castillo, M.O.d., Aouada, D. (2023). CubeSat-CDT: A Cross-Domain Dataset for 6-DoF Trajectory Estimation of a Symmetric Spacecraft. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13801. Springer, Cham. https://doi.org/10.1007/978-3-031-25056-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25056-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25055-2

  • Online ISBN: 978-3-031-25056-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics