Abstract
Despite achieving remarkable progress in recent years, single-image super-resolution methods are developed with several limitations. Specifically, they are trained on fixed content domains with certain degradations (whether synthetic or real). The priors they learn are prone to overfitting the training configuration. Therefore, the generalization to novel domains such as drone top view data, and across altitudes, is currently unknown. Nonetheless, pairing drones with proper image super-resolution is of great value. It would enable drones to fly higher covering larger fields of view, while maintaining a high image quality.
To answer these questions and pave the way towards drone image super-resolution, we explore this application with particular focus on the single-image case. We propose a novel drone image dataset, with scenes captured at low and high resolutions, and across a span of altitudes. Our results show that off-the-shelf state-of-the-art networks witness a significant drop in performance on this different domain. We additionally show that simple fine-tuning, and incorporating altitude awareness into the network’s architecture, both improve the reconstruction performance (Our code and data are available at https://github.com/IVRL/DSR).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 126–135 (2017)
Al-Kaff, A., Martin, D., Garcia, F., de la Escalera, A., Armingol, J.M.: Survey of computer vision algorithms and applications for unmanned aerial vehicles. Expert Syst. Appl. 92, 447–463 (2018)
Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding (2012)
Bhardwaj, K., et al.: Collapsible linear blocks for super-efficient super resolution. In: Proceedings of Machine Learning and Systems, vol. 4, pp. 529–547 (2022)
Bhat, G., Danelljan, M., Van Gool, L., Timofte, R.: Deep burst super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9209–9218 (2021)
Cai, J., Gu, S., Timofte, R., Zhang, L.: NTIRE 2019 challenge on real image super-resolution: methods and results. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)
Cai, J., Zeng, H., Yong, H., Cao, Z., Zhang, L.: Toward real-world single image super-resolution: a new benchmark and a new model. In: Proceedings of the IEEE International Conference on Computer Vision (2019)
Chan, T.M., Zhang, J., Pu, J., Huang, H.: Neighbor embedding based super-resolution algorithm through edge detection and feature selection. Pattern Recogn. Lett. 30(5), 494–502 (2009)
DJI: DJI Mavic 3 - user manual v1.6 (2022). https://dl.djicdn.com/downloads/DJI_Mavic_3/20220531/DJI_Mavic_3_User_Manual_v1.6_en.pdf
Du, D., et al.: The unmanned aerial vehicle benchmark: object detection and tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 375–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_23
Dudhane, A., Zamir, S.W., Khan, S., Khan, F., Yang, M.H.: Burst image restoration and enhancement. arXiv preprint arXiv:2110.03680 (2021)
El Helou, M., Süsstrunk, S.: Blind universal Bayesian image denoising with Gaussian noise level learning. IEEE Trans. Image Process. 29, 4885–4897 (2020)
El Helou, M., Zhou, R., Süsstrunk, S.: Stochastic frequency masking to improve super-resolution and denoising networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 749–766. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_44
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)
Hsieh, M.R., Lin, Y.L., Hsu, W.H.: Drone-based object counting by spatially regularized regional proposal network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4145–4153 (2017)
Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5197–5206 (2015)
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Lecouat, B., Ponce, J., Mairal, J.: Lucas-kanade reloaded: end-to-end super-resolution from raw image bursts. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2370–2379 (2021)
Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2017)
Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: SwinIR: image restoration using swin transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1833–1844 (2021)
Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 136–144 (2017)
Lin, X., Bhattacharjee, D., El Helou, M., Süsstrunk, S.: Fidelity estimation improves noisy-image classification with pretrained networks. IEEE Sig. Process. Lett. 28, 1719–1723 (2021)
Liu, K., Mattyus, G.: Fast multiclass vehicle detection on aerial images. IEEE Geosci. Remote Sens. Lett. 12(9), 1938–1942 (2015)
Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE (1999)
Ma, K., et al.: Waterloo exploration database: new challenges for image quality assessment models. IEEE Trans. Image Process. 26(2), 1004–1016 (2016)
Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2, pp. 416–423. IEEE (2001)
Mei, Y., Fan, Y., Zhou, Y.: Image super-resolution with non-local sparse attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3517–3526 (6 2021)
Oh, S., et al.: A large-scale benchmark dataset for event recognition in surveillance video. In: CVPR 2011, pp. 3153–3160. IEEE (2011)
Shocher, A., Cohen, N., Irani, M.: “zero-shot” super-resolution using deep internal learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3118–3126 (2018)
Sun, J., Xu, Z., Shum, H.Y.: Image super-resolution using gradient profile prior. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2008)
Timofte, R., Agustsson, E., Van Gool, L., Yang, M.H., Zhang, L.: NTIRE 2017 challenge on single image super-resolution: methods and results. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 114–125 (2017)
Wang, L., et al.: Unsupervised degradation representation learning for blind super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10581–10590 (2021)
Wang, X., Dong, C., Shan, Y.: RepSR: training efficient VGG-style super-resolution networks with structural re-parameterization and batch normalization. arXiv preprint arXiv:2205.05671 (2022)
Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 63–79. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_5
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Xu, X., et al.: DAC-SDC low power object detection challenge for UAV applications. IEEE Trans. Pattern Anal. Mach. Intell. 43(2), 392–403 (2019)
Xu, Y., Ou, J., He, H., Zhang, X., Mills, J.: Mosaicking of unmanned aerial vehicle imagery in the absence of camera poses. Remote Sens. 8(3), 204 (2016)
Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47
Zhang, K., Liang, J., Van Gool, L., Timofte, R.: Designing a practical degradation model for deep blind image super-resolution. In: IEEE International Conference on Computer Vision, pp. 4791–4800 (2021)
Zhang, K., Zuo, W., Zhang, L.: Learning a single convolutional super-resolution network for multiple degradations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018)
Zhang, X., Zeng, H., Zhang, L.: Edge-oriented convolution block for real-time super resolution on mobile devices. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 4034–4043 (2021)
Zhang, X., Chen, Q., Ng, R., Koltun, V.: Zoom to learn, learn to zoom. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3762–3770 (2019)
Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_18
Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2472–2481 (2018)
Zhou, R., El Helou, M., Sage, D., Laroche, T., Seitz, A., Süsstrunk, S.: W2S: microscopy data with joint denoising and super-resolution for widefield to SIM mapping. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12535, pp. 474–491. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66415-2_31
Zhou, R., Lahoud, F., El Helou, M., Süsstrunk, S.: A comparative study on wavelets and residuals in deep super resolution. In: Electronic Imaging (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lin, X., Ozaydin, B., Vidit, V., El Helou, M., Süsstrunk, S. (2023). DSR: Towards Drone Image Super-Resolution. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13802. Springer, Cham. https://doi.org/10.1007/978-3-031-25063-7_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-25063-7_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25062-0
Online ISBN: 978-3-031-25063-7
eBook Packages: Computer ScienceComputer Science (R0)