Skip to main content

DSR: Towards Drone Image Super-Resolution

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Abstract

Despite achieving remarkable progress in recent years, single-image super-resolution methods are developed with several limitations. Specifically, they are trained on fixed content domains with certain degradations (whether synthetic or real). The priors they learn are prone to overfitting the training configuration. Therefore, the generalization to novel domains such as drone top view data, and across altitudes, is currently unknown. Nonetheless, pairing drones with proper image super-resolution is of great value. It would enable drones to fly higher covering larger fields of view, while maintaining a high image quality.

To answer these questions and pave the way towards drone image super-resolution, we explore this application with particular focus on the single-image case. We propose a novel drone image dataset, with scenes captured at low and high resolutions, and across a span of altitudes. Our results show that off-the-shelf state-of-the-art networks witness a significant drop in performance on this different domain. We additionally show that simple fine-tuning, and incorporating altitude awareness into the network’s architecture, both improve the reconstruction performance (Our code and data are available at https://github.com/IVRL/DSR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 126–135 (2017)

    Google Scholar 

  2. Al-Kaff, A., Martin, D., Garcia, F., de la Escalera, A., Armingol, J.M.: Survey of computer vision algorithms and applications for unmanned aerial vehicles. Expert Syst. Appl. 92, 447–463 (2018)

    Article  Google Scholar 

  3. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding (2012)

    Google Scholar 

  4. Bhardwaj, K., et al.: Collapsible linear blocks for super-efficient super resolution. In: Proceedings of Machine Learning and Systems, vol. 4, pp. 529–547 (2022)

    Google Scholar 

  5. Bhat, G., Danelljan, M., Van Gool, L., Timofte, R.: Deep burst super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9209–9218 (2021)

    Google Scholar 

  6. Cai, J., Gu, S., Timofte, R., Zhang, L.: NTIRE 2019 challenge on real image super-resolution: methods and results. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  7. Cai, J., Zeng, H., Yong, H., Cao, Z., Zhang, L.: Toward real-world single image super-resolution: a new benchmark and a new model. In: Proceedings of the IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  8. Chan, T.M., Zhang, J., Pu, J., Huang, H.: Neighbor embedding based super-resolution algorithm through edge detection and feature selection. Pattern Recogn. Lett. 30(5), 494–502 (2009)

    Article  Google Scholar 

  9. DJI: DJI Mavic 3 - user manual v1.6 (2022). https://dl.djicdn.com/downloads/DJI_Mavic_3/20220531/DJI_Mavic_3_User_Manual_v1.6_en.pdf

  10. Du, D., et al.: The unmanned aerial vehicle benchmark: object detection and tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 375–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_23

    Chapter  Google Scholar 

  11. Dudhane, A., Zamir, S.W., Khan, S., Khan, F., Yang, M.H.: Burst image restoration and enhancement. arXiv preprint arXiv:2110.03680 (2021)

  12. El Helou, M., Süsstrunk, S.: Blind universal Bayesian image denoising with Gaussian noise level learning. IEEE Trans. Image Process. 29, 4885–4897 (2020)

    Article  MATH  Google Scholar 

  13. El Helou, M., Zhou, R., Süsstrunk, S.: Stochastic frequency masking to improve super-resolution and denoising networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 749–766. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_44

    Chapter  Google Scholar 

  14. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  15. Hsieh, M.R., Lin, Y.L., Hsu, W.H.: Drone-based object counting by spatially regularized regional proposal network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4145–4153 (2017)

    Google Scholar 

  16. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5197–5206 (2015)

    Google Scholar 

  17. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  18. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)

    Google Scholar 

  19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  20. Lecouat, B., Ponce, J., Mairal, J.: Lucas-kanade reloaded: end-to-end super-resolution from raw image bursts. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2370–2379 (2021)

    Google Scholar 

  21. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  22. Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: SwinIR: image restoration using swin transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1833–1844 (2021)

    Google Scholar 

  23. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 136–144 (2017)

    Google Scholar 

  24. Lin, X., Bhattacharjee, D., El Helou, M., Süsstrunk, S.: Fidelity estimation improves noisy-image classification with pretrained networks. IEEE Sig. Process. Lett. 28, 1719–1723 (2021)

    Article  Google Scholar 

  25. Liu, K., Mattyus, G.: Fast multiclass vehicle detection on aerial images. IEEE Geosci. Remote Sens. Lett. 12(9), 1938–1942 (2015)

    Article  Google Scholar 

  26. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE (1999)

    Google Scholar 

  27. Ma, K., et al.: Waterloo exploration database: new challenges for image quality assessment models. IEEE Trans. Image Process. 26(2), 1004–1016 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2, pp. 416–423. IEEE (2001)

    Google Scholar 

  29. Mei, Y., Fan, Y., Zhou, Y.: Image super-resolution with non-local sparse attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3517–3526 (6 2021)

    Google Scholar 

  30. Oh, S., et al.: A large-scale benchmark dataset for event recognition in surveillance video. In: CVPR 2011, pp. 3153–3160. IEEE (2011)

    Google Scholar 

  31. Shocher, A., Cohen, N., Irani, M.: “zero-shot” super-resolution using deep internal learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3118–3126 (2018)

    Google Scholar 

  32. Sun, J., Xu, Z., Shum, H.Y.: Image super-resolution using gradient profile prior. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  33. Timofte, R., Agustsson, E., Van Gool, L., Yang, M.H., Zhang, L.: NTIRE 2017 challenge on single image super-resolution: methods and results. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 114–125 (2017)

    Google Scholar 

  34. Wang, L., et al.: Unsupervised degradation representation learning for blind super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10581–10590 (2021)

    Google Scholar 

  35. Wang, X., Dong, C., Shan, Y.: RepSR: training efficient VGG-style super-resolution networks with structural re-parameterization and batch normalization. arXiv preprint arXiv:2205.05671 (2022)

  36. Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 63–79. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_5

    Chapter  Google Scholar 

  37. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  38. Xu, X., et al.: DAC-SDC low power object detection challenge for UAV applications. IEEE Trans. Pattern Anal. Mach. Intell. 43(2), 392–403 (2019)

    Article  Google Scholar 

  39. Xu, Y., Ou, J., He, H., Zhang, X., Mills, J.: Mosaicking of unmanned aerial vehicle imagery in the absence of camera poses. Remote Sens. 8(3), 204 (2016)

    Article  Google Scholar 

  40. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  41. Zhang, K., Liang, J., Van Gool, L., Timofte, R.: Designing a practical degradation model for deep blind image super-resolution. In: IEEE International Conference on Computer Vision, pp. 4791–4800 (2021)

    Google Scholar 

  42. Zhang, K., Zuo, W., Zhang, L.: Learning a single convolutional super-resolution network for multiple degradations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  43. Zhang, X., Zeng, H., Zhang, L.: Edge-oriented convolution block for real-time super resolution on mobile devices. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 4034–4043 (2021)

    Google Scholar 

  44. Zhang, X., Chen, Q., Ng, R., Koltun, V.: Zoom to learn, learn to zoom. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3762–3770 (2019)

    Google Scholar 

  45. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_18

    Chapter  Google Scholar 

  46. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2472–2481 (2018)

    Google Scholar 

  47. Zhou, R., El Helou, M., Sage, D., Laroche, T., Seitz, A., Süsstrunk, S.: W2S: microscopy data with joint denoising and super-resolution for widefield to SIM mapping. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12535, pp. 474–491. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66415-2_31

    Chapter  Google Scholar 

  48. Zhou, R., Lahoud, F., El Helou, M., Süsstrunk, S.: A comparative study on wavelets and residuals in deep super resolution. In: Electronic Imaging (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyu Lin .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 7934 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, X., Ozaydin, B., Vidit, V., El Helou, M., Süsstrunk, S. (2023). DSR: Towards Drone Image Super-Resolution. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13802. Springer, Cham. https://doi.org/10.1007/978-3-031-25063-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25063-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25062-0

  • Online ISBN: 978-3-031-25063-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics