Abstract
High dynamic range (HDR) imaging is still a challenging task in modern digital photography. Recent research proposes solutions that provide high-quality acquisition but at the cost of a very large number of operations and a slow inference time that prevent the implementation of these solutions on lightweight real-time systems. In this paper, we propose CEN-HDR, a new computationally efficient neural network by providing a novel architecture based on a light attention mechanism and sub-pixel convolution operations for real-time HDR imaging. We also provide an efficient training scheme by applying network compression using knowledge distillation. We performed extensive qualitative and quantitative comparisons to show that our approach produces competitive results in image quality while being faster than state-of-the-art solutions, allowing it to be practically deployed under real-time constraints. Experimental results show our method obtains a score of 43.04 \(\mu \)-PSNR on the Kalantari2017 dataset with a framerate of 33 FPS using a Macbook M1 NPU. The proposed network will be available at https://github.com/steven-tel/CEN-HDR
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, Y., Kalantidis, Y., Li, J., Yan, S., Feng, J.: \(a^2\)-nets: double attention networks (2018). https://doi.org/10.48550/ARXIV.1810.11579. https://arxiv.org/abs/1810.11579
Chollet, F.: Xception: deep learning with depthwise separable convolutions (2016). https://doi.org/10.48550/ARXIV.1610.02357. https://arxiv.org/abs/1610.02357
Debevec, P.E., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 369–378. SIGGRAPH 1997, ACM Press/Addison-Wesley Publishing Co., USA (1997). https://doi.org/10.1145/258734.258884. https://doi.org/10.1145/258734.258884
Froehlich, J., Grandinetti, S., Eberhardt, B., Walter, S., Schilling, A., Brendel, H.: Creating cinematic wide gamut HDR-video for the evaluation of tone mapping operators and HDR-displays. In: Proceedings SPIE 9023 (2014). https://doi.org/10.1117/12.2040003
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network (2015). https://doi.org/10.48550/ARXIV.1503.02531. https://arxiv.org/abs/1503.02531
Hu, J., Gallo, O., Pulli, K., Sun, X.: HDR deghosting: how to deal with saturation? In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1163–1170 (2013). https://doi.org/10.1109/CVPR.2013.154
Kalantari, N.K., Ramamoorthi, R.: Deep high dynamic range imaging of dynamic scenes. ACM Trans. Graph. (Proceedings of SIGGRAPH 2017) 36(4), 1–12 (2017)
Khan, Z., Khanna, M., Raman, S.: FHDR: HDR image reconstruction from a single LDR image using feedback network (2019)
Li, F., et al.: Gamma-enhanced spatial attention network for efficient high dynamic range imaging. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 1032–1040 (2022)
Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks (2019). https://doi.org/10.48550/ARXIV.1903.06586. https://arxiv.org/abs/1903.06586
Liu, C.: Beyond pixels: exploring new representations and applications for motion analysis, Ph. D. thesis, MIT, USA (2009) aAI0822221
Liu, Y.L., et al.: Single-image HDR reconstruction by learning to reverse the camera pipeline (2020)
Liu, Z., et al.: Adnet: attention-guided deformable convolutional network for high dynamic range imaging (2021)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)
Mantiuk, R., Kim, K.J., Rempel, A.G., Heidrich, W.: HDR-VDP-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions. In: ACM SIGGRAPH 2011 Papers. SIGGRAPH 2011, Association for Computing Machinery, New York, NY, USA (2011). https://doi.org/10.1145/1964921.1964935. https://doi.org/10.1145/1964921.1964935
Mantiuk, R.K., Azimi, M.: Pu21: a novel perceptually uniform encoding for adapting existing quality metrics for HDR. In: 2021 Picture Coding Symposium (PCS), pp. 1–5 (2021). https://doi.org/10.1109/PCS50896.2021.9477471
Nayar, S., Mitsunaga, T.: High dynamic range imaging: spatially varying pixel exposures. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2000 (Cat. No.PR00662), vol. 1, pp. 472–479 (2000). https://doi.org/10.1109/CVPR.2000.855857
Niu, Y., Wu, J., Liu, W., Guo, W., Lau, R.W.H.: HDR-GAN: HDR image reconstruction from multi-exposed LDR images with large motions. IEEE Trans. Image Process. 30, 3885–3896 (2021). https://doi.org/10.1109/TIP.2021.3064433
Park, J., Woo, S., Lee, J.Y., Kweon, I.S.: Bam: bottleneck attention module (2018). https://doi.org/10.48550/ARXIV.1807.06514. https://arxiv.org/abs/1807.06514
Pérez-Pellitero, E., et al.: NTIRE 2022 challenge on high dynamic range imaging: methods and results. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 1009–1023 (2022)
Prabhakar, K.R., Agrawal, S., Singh, D.K., Ashwath, B., Babu, R.V.: Towards practical and efficient high-resolution HDR Deghosting with CNN. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 497–513. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_30
Prabhakar, K.R., Agrawal, S., Babu, R.V.: Self-gated memory recurrent network for efficient scalable HDR deghosting. CoRR abs/2112.13050 (2021). https://arxiv.org/abs/2112.13050
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. CoRR abs/1505.04597 (2015). https://arxiv.org/abs/1505.04597
Sen, P., Kalantari, N.K., Yaesoubi, M., Darabi, S., Goldman, D.B., Shechtman, E.: Robust patch-based HDR reconstruction of dynamic scenes. ACM Trans. Graphics (TOG) (Proceedings of SIGGRAPH Asia 2012) 31(6), 1–11 (2012)
Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network (2016)
Tumblin, J., Agrawal, A., Raskar, R.: Why i want a gradient camera. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR2005), vol. 1, pp. 103–110 (2005). https://doi.org/10.1109/CVPR.2005.374
Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module (2018). https://doi.org/10.48550/ARXIV.1807.06521. https://arxiv.org/abs/1807.06521
Wu, S., Xu, J., Tai, Y., Tang, C.: End-to-end deep HDR imaging with large foreground motions. CoRR abs/1711.08937 (2017). https://arxiv.org/abs/1711.08937
Wu, S., Xu, J., Tai, Y.-W., Tang, C.-K.: Deep high dynamic range imaging with large foreground motions. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 120–135. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_8
Yan, Q., et al.: Attention-guided network for ghost-free high dynamic range imaging. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1751–1760 (2019)
Yan, Q., et al.: Multi-scale dense networks for deep high dynamic range imaging. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 41–50 (2019). https://doi.org/10.1109/WACV.2019.00012
Yan, Q., et al.: Deep HDR imaging via a non-local network. IEEE Trans. Image Process. 29, 4308–4322 (2020). https://doi.org/10.1109/TIP.2020.2971346
Yan, Q., et al.: A lightweight network for high dynamic range imaging. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 824–832 (2022)
Ye, Q., Xiao, J., Lam, K., Okatani, T.: Progressive and selective fusion network for high dynamic range imaging. CoRR abs/2108.08585 (2021). https://arxiv.org/abs/2108.08585
Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions (2015). https://doi.org/10.48550/ARXIV.1511.07122. https://arxiv.org/abs/1511.07122
Yu, G., Zhang, J., Ma, Z., Wang, H.: Efficient progressive high dynamic range image restoration via attention and alignment network (2022). https://doi.org/10.48550/ARXIV.2204.09213. https://arxiv.org/abs/2204.09213
Zeng, H., Cai, J., Li, L., Cao, Z., Zhang, L.: Learning image-adaptive 3D lookup tables for high performance photo enhancement in real-time. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, p. 1 (2020). https://doi.org/10.1109/TPAMI.2020.3026740
Zhang, H., Zu, K., Lu, J., Zou, Y., Meng, D.: EPSANet: an efficient pyramid squeeze attention block on convolutional neural network (2021). https://doi.org/10.48550/ARXIV.2105.14447. https://arxiv.org/abs/2105.14447
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Tel, S., Heyrman, B., Ginhac, D. (2023). CEN-HDR: Computationally Efficient Neural Network for Real-Time High Dynamic Range Imaging. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13802. Springer, Cham. https://doi.org/10.1007/978-3-031-25063-7_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-25063-7_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25062-0
Online ISBN: 978-3-031-25063-7
eBook Packages: Computer ScienceComputer Science (R0)