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Abstract. Representation disentanglement is an important goal of the represen-
tation learning that benefits various of downstream tasks. To achieve this goal,
many unsupervised learning representation disentanglement approaches have been
developed. However, the training process without utilizing any supervision signal
have been proved to be inadequate for disentanglement representation learning.
Therefore, we propose a novel weakly-supervised training approach, named as
SW-VAE, which incorporates pairs of input observations as supervision signal
by using the generative factors of datasets. Furthermore, we introduce strategies
to gradually increase the learning difficulty during training to smooth the training
process. As shown on several datasets, our model shows significant improvement
over state-of-the-art (SOTA) methods on representation disentanglement tasks.

1 Introduction

Deep neural network (DNN) has achieved great success in many computer vision tasks,
such as image classification [8], face recognition [33] and image generation [13]. Learn-
ing a latent representation z from input data x is a critical first step in training DNNs, in
which the objective is to learn lower dimensional representations that facilitate down-
stream tasks, including classification [14], few-shot learning [34] or semantic segmen-
tation [26].

Two of the fundamental challenges for robust latent representations are overfitting
and interpretability. Since DNNs are massively paramterized models, they require large
amounts of training data that sufficiently span all factors of variations, such as pose,
expression and gender in face recognition models [22]. In the absence of large scale
dataset that spans all factors of variations, DNNs tend to overfit to the underlying factors
of variations. Moreover, since the training objective is minimizing the empirical risk,
standard methods for training DNNs (e.g., [30,18]) produce latent representations that
lack semantic meaning and hard to interpret without further processing.

Bengio et al. [1] define a disentangled representation z such that a change in a
given representation dimension zi corresponds to a change in one and only one under-
lying factor of variation i of the data (i.e., invariant to all other factors). The definition
of [1] addresses the semantic interpretability of the representation in standard training
methods, and is used as the basis for methods such as Factor Variational Autoencoder
(FactorVAE) [17] and β-VAE [15]. Recent work revealed the benefits of disentangled
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Fig. 1: The basic concept of swapping latent factors of variation, represented by different col-
ors. Left (a): If two representations are completely disentangled (e.g., A and B), then swapping
equivalent latent factors (a1 with b1, and a3 with b3) will lead to similar representations. Right
(b): If C and D are entangled, then swapping latent factors (c1 with d1 and c3 with d3) may lead
to dissimilar representations.

representations of factors of variations in various downstream tasks such as, visual rea-
soning [31], interpretability [1,15], filtering out nuisance [20], answering counterfactual
questions [29], and fairness [7].

Unsupervised disentanglement methods [17,15,5,16] relying on variational autoen-
coder (VAE) [18] which assume that the latent representation follows a normal distri-
bution, where the encoder is used to estimate the posterior pθ(z|x) and the decoder
is used to estimate pϕ(x|z). The loss function is constructed for comparing the dif-
ference between prior and posterior. However, Locatello et al. [23] proved that there
are an infinite number of entangled models whose latent representation z has the same
marginal distribution with the ideal disentangled model, and since unsupervised learn-
ing methods only use information of the observations x, they can not discriminate be-
tween the disentangled model and other entangled models. Locatello et al. [23] fur-
ther empirically analyzed state-of-the-art (SOTA) unsupervised models on different
datasets, which demonstrates the necessity of supervision signal. To address the chal-
lenge, many semi-supervised and weakly supervised learning methods have been pro-
posed [24,25,4]. One of these is methods is Ada-VAE [24] which requires the knowl-
edge of exact number of different generative factors between a pair of images in order
to achieve disentangled representation with guarantees. Rather than relying on such
precise prior knowledge, our method only requires the information of the maximum
number of different generative factors, and empirical results demonstrate that the dis-
entangled representation can still be achieved with weaker supervision signal.
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In this paper, we introduces a new method for learning latent representations with
disentangled factors of variations via introducing weak supervision signals during train-
ing to encourage the model to learn disentangled representations. Inspired by the self-
supervised learning methods which utilize the supervision provided by pairs of inputs
[11,6], we propose using pairs of inputs to introduce supervision signals. After en-
coding input pairs into latent representations, similar to the swapping method used in
image manipulation [28], we encourage the disentanglement by swapping the latent fac-
tors and comparing their corresponding reconstructions with the original inputs. As the
simple example illustrated in Figure 1, when the representation is fully disentangled,
swapping the same elements does not change their distribution, whereas the distribu-
tion of entangled representation changes after swapping. In disentanglement learning,
DSD [10], which also adopts swapping concept, is trained under two steps. Firstly, a
pair of labeled inputs are encoded, swapped, and decoded. In the second step, a random
k-th part of latent representations encoded from unlabelled inputs is swapped and de-
coded. Therefore, DSD is trained under semi-supervised condition, and as discussed in
the DSD [10], more than 20% of labeled data are needed to train the model. However,
in many cases, the number of labeled data is limited due to the annotation cost is ex-
pensive. Compared to DSD, our method does not require actual label information while
merely needing access to the total number of generative factors, and we empirically
prove that our method achieves comparable performance. On the occasion of the exact
number of different generative factors in the pairs are available, where the supervi-
sion strength is still weaker than DSD, our method can outperform DSD. Furthermore,
we propose training strategies which progressively adjust the difficulty of task during
learning process.

Our contributions in this paper are: (1) SW-VAE, a new weakly supervised rep-
resentation disentanglement framework and (2) extensive quantitative and qualitative
experimental evaluation demonstrating that SW-VAE outperforms SOTA representa-
tion disentanglement methods on various datasets including dSprites [27], 3dshapes [2],
MPI3D-toy [12], MPI3D-realistic [12], and MPI3D-real [12].

2 Related Work

Learning Disentanglement Representation: Variational autoencoders (VAE) [18] is
the basic framework of most SOTA disentanglement methods. VAE uses a DNN to
map the inputs into latent representation modeled as a distribution denoted by qϕ(z|x).
Recent methods modifies VAE by adding implicit or explicit regularization to disen-
tanglement representation. β-VAE [15] adds and tunes a hyper-parameter β before KL
divergence (DKL) in order to achieve balanced performance on both reconstruction and
latent representation disentanglement. In β-VAE, when β > 1, the distribution qϕ(z|x)
is used to calculate disentanglement regularization by comparing with the assuming
prior p(z). Kullback-Leibler divergence (DKL) is used to calculate the distance be-
tween qϕ(z|x) and p(z) for disentanglement regularization. The disentanglement reg-
ularization is then combined with the quality of image reconstruction to be the total
objective function of the model training.
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Fig. 2: Framework of SW-VAE, E1 and E2 share same parameters; D1,D2,D3,D4 share same
parameters

Burgess et al. [3] proposed AnnealedVAE, a modification of β-VAE. Intuitively,
AnnealedVAE can be viewed as gradually increasing the capacity of latent encoding.
When the encoding capacity is low, the model is forced only to encode input data which
brings the most significant improvement in reconstructions. As capacity increases dur-
ing training, the model learns to encode other semantic factors into the latent rep-
resentation progressively while continues to disentangle the previous learned factors.
FactorVAE [17] proposes a better trade-off between reconstruction quality and disen-
tanglement by incorporating the discriminator to calculate the Total Correlation (TC)
between q(z) and

∏
q(zi). The discriminator in FactorVAE has the same function as

the discriminator in GAN [13]. DIP-VAE [20] adds D(qϕ(z)||p(z)) as additional reg-
ularization to encourage disentanglement, where qϕ(z) is the marginal distribution of
the latent representation z learned by model and qϕ(z) =

∫
qϕ(z|x)p(x)dx. D stands

for any suitable distance function. β-TCVAE [5] decomposes the DKL regularization
used in β-VAE into three parts: index-code mutual information, total correlation and
dimension-wise KL divergence. Index-code mutual information controls the mutual
information between input data and factors in latent representation. Total correlation
encourages the model to find the statistically independent factors in latent space and
dimension-wise individual latent components are kept from overly diverging from their
priors via KL divergence.

Weakly supervised learning: Zhou et al. [35] conclude that there are three forms
of weak supervision in general. The first type is incomplete supervision, i.e., only part
of training samples have labels. This condition can be addressed by semi-supervised
learning or active learning. The second type is inexact supervision where the labels are
less precise than labels used in supervised learning, or only coarse-grained labels are
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provided. The third type is inaccurate supervision. The labels of some data are wrong
in this case, e.g., some images or languages are labelled into the wrong class.

3 SW-VAE Model

As discussed in Section 1, Bengio et al. [1] define representation disentanglement as
learning a latent representation z ∈ Rdz of input observation x ∈ Rdx , in which each
dimension zi changes if and only if an underlying factor of variation i of the data
changes, and therefore the joint probability can be modeled as p(z) =

∏
i=1 p(zi).

Meanwhile, each latent element zi is expected to contain one and only one semantic
meaning, such that traversing alone one latent element and fixing other elements will
only change one factor of variantion within the reconstructed images obtained from
the decoder [18]. Thus, for each factor of variation, there is only one highly associated
latent factor. When measuring the performance of different disentanglement models,
this principle is used to evaluate both the degree of disentanglement and the level of
similarity between a latent factor and one semantic generative factor.

The number of generative factors of variations is less than the dimension of latent
representation (v ≤ dz), such that a subset of z encodes information that is irrelevant
to the generative factors of variations, and does not necessarily have semantic meaning;
yet still satisfying the independency assumptions. Disentanglement therefore leads to a
latent factor zi that is invariant to all other factors of variation of x.

In variational autoencoder (VAE) [19], a variational model qϕ(z|x) is used to pro-
duce a probability distribution qϕ given an input sample x. This essentially simulates
sampling a latent representation z from a prior distribution pθ(z), where θ and ϕ are
the generative and variational parameter spaces respectively. The overall loss function
of the VAE is shown in Equation (1).

LV AE(x, z) = −Eqϕ(z|x)[logpθ(x|z)] + βDKL(qϕ(z|x)||p(z)) (1)

where β = 1. β-VAE [15] forces the VAE to learn the disentanglement by setting
β > 1. Other unsupervised learning methods [17,20] improve the performance of rep-
resentation disentanglement by modifying DKL, which serves as disentanglement regu-
larization. Similarly, we add another disentanglement regularization in the loss function
by introducing supervision signals using selected pairs of inputs.

Weakly Supervised Swap Variational Autoencoder (SW-VAE): As illustrated in Fig-
ure 2, the proposed network framework, SW-VAE, consists of two encoders and four
decoders, where the parameters within all encoders and decoders are shared respec-
tively. During training, the network is fed a pair of samples x(l) and x(m) and generates
representations z(l) and z(m) via encoders E1 and E2 respectively. Decoders D1 and
D2 are used to reconstruct x(l) and x(m) as x(l)

rec and x
(m)
rec respectively; essentially sim-

ulating generating input samples x from the distribution pθ(x|z). Random factors of
z(l) and z(m) are swapped to generate two new corresponding latent representations
ẑ(l) and ẑ(m). Decoders D3 and D4 are used to decode the new latent representations
ẑ(l) and ẑ(m) to x̂

(l)
rec and x̂

(m)
rec .
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Fig. 3: Illustration of generating a pair of images of dSprites with different generative factors.
The true generative factors values are unavailable during training.

Detecting distinct generative factors: Some latent factors in the representations z(l)

and z(m) are fed into a Detect and Swap module, which attempts to detect the gen-
erative factors of variations that are different between x(l) and x(m). As described in
Equation (2), if the latent representations are fully disentangled, z(l) and z(m) will be
same with respect to the dimensions where the same generative factors of x(l) and x(m)

are encoded in. z(l) and z(m) will be different in the dimensions where different gen-
erative factors of x(l) and x(m) are encoded in. We call the set containing all different
underlying factors to be DFz where DFz ⊆ Rdz .

p(z
(l)
j |x(l)) = p(z

(m)
j |x(m)); j /∈ DFz

p(z
(l)
i |x(l)) ̸= p(z

(m)
i |x(m)); i ∈ DFz

(2)

According to [15], the posterior distribution of latent representations is assumed to be
Multivariate Gaussian, p(z|x) = qθ(z|x) = N (µ, σ2I); and the stochastic model be-
comes differentiable by incorporating reparameterization trick. By using the Multivari-
ate Gaussian assumption and reparamterization trick, the mutual information between
the corresponding dimensions of two latent representation z(l) and z(m) can be directly
measured by computing the KL divergence between the distributions of these two latent
elements. In practice, by using the posterior distribution of latent representation, we can
calculate the KL divergence as shown in Equation (3):

DKL(qϕ(z
(l)
i |x(l))||qϕ(z(m)

i |x(m)))

=
(σ

(l)
i )2 + (µ

(l)
i − µ

(m)
i )2

2(σ
(l)
i )2

+ log(
σ
(l)
i

σ
(m)
i

)− 1

2
(3)

Instead of using full labels for training, we generate image pairs with at most k
distinct factors of variations, and use k as the weak supervision signals for SW-VAE.
Since there are at most k distinct generative factors when generating the pair of inputs
x(l) and x(m), we expect that there are also at most k latent factors with distinct different
values. We assume the top k most distinct underlying factors of variation are the latent
factors that produce the highest k KL divergence values for i = [1, 2, . . . , dz]. After
detecting the indices of distinct factors in the latent space, we then swap the factors
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Fig. 4: Increasing number of latent factors to swap as training progresses. Only one latent factor
is swapped during warm up. The number of latent factors to be swapped increases gradually

between two latent representations, except the top k most distinct ones. We create two
new swapped latent representations ẑ(l) and ẑ(m) using Equation (4):

ẑ
(l)
i = z

(m)
i ; ẑ

(m)
i = z

(l)
i ; ∀i /∈ DFz

ẑ
(l)
j = z

(l)
j ; ẑ

(m)
j = z

(m)
j ; ∀j ∈ DFz

(4)

The two swapped representations are then fed into decoders D3 and D4 to produce
two reconstructions of input observations x(l) and x(m) as x̂(l)

rec and x̂
(m)
rec respectively.

Intuitively, if the network successfully detects all distinct underlying factors of varia-
tions, the swapped representations ẑ(l) and ẑ(m) will be identical to the original repre-
sentations z(l) and z(m), and therefore the new reconstructed images will be same with
the original reconstructions and similar to input observations. This process simultane-
ously enforces disentangling latent factors and encoding semantic meaning within into
these latent factors. Violating either of these two requirements will lead to differences
between the new reconstructions and the original reconstructions. The overall generic
loss of the entire network can then be formulated as shown in Equation (5).

L =LV AE(x
(l)
rec, z

(l)) + LV AE(x
(m)
rec , z

(m))

+ Lg(x̂
(l)
rec, x

(l)
rec) + Lg(x̂

(m)
rec , x

(m)
rec )

(5)

where Lg is the distance function to calculate the difference between xrec and x̂rec. For
a detailed study of the behavior of various distance functions, we follow both VAE [18]
and VAE-GAN [21], and introduce two different instantiations of SW-VAE as follows.

SW-VAESIM : In SW-VAESIM we directly compare the similarity of reconstructions
xrec and x̂rec by calculating the mean square error (MSE) loss or binary cross-entropy
(BCE) loss, as shown in Equations (6) and (7) respectively.

Lcompare MSE =LV AE(x
(l)
rec, z

(l)) + LV AE(x
(m)
rec , z

(m))

+ γ||x̂(l)
rec − x(l)

rec||22 + γ||x̂(m)
rec − x(m)

rec ||22
(6)

Lcompare BCE =LV AE(x
(l)
rec, z

(l)) + LV AE(x
(m)
rec , z

(m))

+ γBCE(x̂(l)
rec, x

(l)
rec) + γBCE(x̂(m)

rec , x
(m)
rec )

(7)
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Fig. 5: Increasing number of distinct generative factors used to produce image pairs as training
progresses.

SW-VAEGAN : In SW-VAEGAN we use a discriminator to measure the similarity be-
tween reconstruction pairs. During training, the VAE tries to minimize the distance
between xrec and x̂rec. The discriminator tries to measure the differences between two
input images. We use binary cross-entropy loss to train the VAE and discriminator. Im-
age labels are set to one when training VAE and labels are set to zero when training
discriminator. In SW-VAEGAN , the loss function to train VAE is expressed in Equa-
tion (8) and the loss function to train the discriminator is expressed in Equation (9).

LGAN =LV AE(x
(l)
rec, z

(l)) + LV AE(x
(m)
rec , z

(m))

+ γBCE(Cw

[
x̂(l)
rec, x

(l)
rec

]
,1) + γBCE(Cw

[
x̂(m)
rec , x

(m)
rec

]
,1)

(8)

Ldisc =BCE(Cw

[
x̂(l)
rec, x

(l)
rec

]
,0) +BCE(Cw

[
x̂(m)
rec , x

(m)
rec

]
,0) (9)

The overall architecture of SW-VAE is shown in Figure 2. The difference between
these two algorithms is the measurement criterion of comparing the similarity between
the reconstruction output xrecon from original the latent representations and the new
reconstruction output x̂recon from the new latent representations.

Training using maximum number of different generative factors: As previously dis-
cussed, Locatello et al. [23] argue that disentanglement of the underlying generative
factors of variations is infeasible without any supervision signal. In this work, we use
pairs of input x(l) and x(m) as weak supervision signals to learn disentangled represen-
tations.

As illustrated in Figure 3, the pair of training samples (x(l), x(m)) can be generated
as follow: we first randomly select a vector V (l) = [v1, v2, ..., vn] to generate obser-
vation x(l) = g(V (l)), where g(V ) is the observation generating function. Then, we
randomly change the value of at most k elements in V (l) to form a new vector V (m).
Finally, we generate the x(m) = g(V (m)). During training, true indices of different
generative factors and true value of generative factors are not provided, where the only
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Table 1: Disentanglement metrics on dSprites and 3dShapes; Bold, Red: best result, Bold, Black:
second best result; SW-VAE(m) is trained only using the maximum number of generative factors,
and SW-VAE(e) is trained with knowledge of the exact number of different generative factors;
Baseline results are generated by us with official public implementation.

Models
dSprites 3dshapes

MIG SAP IRS FVAE DCI MIG SAP IRS FVAE DCI
Unsupervised Disentanglement Learning

betaVAE 0.1115 0.0373 0.5520 0.7886 0.3263 0.1868 0.0643 0.4731 0.8488 0.2460
AnnealedVAE 0.1253 0.0422 0.5592 0.8228 0.3715 0.2350 0.0867 0.5450 0.8651 0.3428

FactorVAE 0.1308 0.0238 0.5634 0.7503 0.1914 0.2265 0.0437 0.6298 0.7876 0.3031
DIP-VAE-I 0.0667 0.0247 0.4497 0.6897 0.1661 0.1438 0.0273 0.5010 0.7671 0.1372
DIP-VAE-II 0.0212 0.0587 0.5434 0.6354 0.0997 0.1372 0.0204 0.4237 0.7416
BetaTCVAE 0.2125 0.0582 0.5437 0.8414 0.3295 0.3644 0.0955 0.5942 0.9627 0.6004

Weakly/Semi-Supervised Disentanglement Learning
DSD 0.3937 0.0771 0.6327 0.9121 0.6015 0.6343 0.1518 0.7623 0.9968 0.9019

Ada-ML-VAE 0.1150 0.0366 0.5712 0.7010 0.2940 0.5092 0.1273 0.6203 0.9956 0.9400
Ada-GVAE 0.2664 0.0735 0.5927 0.8472 0.4790 0.5607 0.1502 0.7076 0.9965 0.9459

SW-VAE(m) 0.4228 0.0780 0.6572 0.8571 0.5994 0.6353 0.1506 0.7316 0.9958 0.9030
SW-VAE(e) 0.4637 0.1077 0.6774 0.8913 0.6852 0.7121 0.1564 0.7837 0.9978 0.9198

information provided to the model is the maximum number of changed factors k, as
mentioned earlier.

During training, there are more than one factors of variants that need to be swapped.
However, in the early training stage, since the model is not well trained yet, exchanging
a large number of factors in the latent representations tends to harm model performance,
which is discussed in Section 4.3. Thus, during warm-up, we only swap the factors
of latent representation where the model is highly confident. As training progresses,
we increase the difficulty by increasing the number of latent representation factors to
swap. We show this procedure in Figure 4 and call this strategy as ISF. We denote
SW-VAE trained under the supervision of maximum number of changed factors as
SW-VAE(m).

Training using exact number of different generative factors: As previously discussed,
SW-VAE(m) is limited to merely know the maximum number k of different generative
factors. By slightly increasing the level of supervision strength, where the exact number
of different generative factors of the pair of inputs are known, the performance of the
model is further boosted though the true indices and values of different generative fac-
tors are still inaccessible for the model. We denote SW-VAE trained under supervision
of exact different generative factors as SW-VAE(e). During training, we set the number
of different generative factors to one and progressively increasing until it reaches the
maximum number. This strategy is illustrated in Figure 5 and we call this strategy as
IGF. The importance of this training strategies is studied in section Section 4.3.
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Table 2: Disentanglement metrics on MPI3D-toy, MPI3D-realistic, and MPI3D-real; Bold, Red:
best result, Bold, Black: second best result; SW-VAE(m) is trained only using the maximum
number of generative factors, and SW-VAE(e) is trained with knowledge of the exact number of
different generative factors; Baseline results are generated by us with official public implementa-
tion.

Models
MPI3d-toy MPI3d-realistic MPI3d-real

MIG SAP IRS FVAE DCI MIG SAP IRS FVAE DCI MIG SAP IRS FVAE DCI

Unsupervised Disentanglement Learning

betaVAE 0.132 0.061 0.584 0.353 0.274 0.150 0.138 0.574 0.350 0.361 0.137 0.071 0.579 0.368 0.367

AnnealedVAE 0.155 0.107 0.553 0.411 0.360 0.109 0.114 0.531 0.466 0.363 0.099 0.038 0.490 0.396 0.229

FactorVAE 0.183 0.070 0.512 0.398 0.273 0.136 0.069 0.560 0.386 0.215 0.093 0.031 0.529 0.391 0.192

DIP-VAE-I 0.156 0.085 0.484 0.517 0.284 0.167 0.134 0.525 0.566 0.337 0.130 0.074 0.509 0.533 0.264

DIP-VAE-II 0.061 0.027 0.412 0.487 0.163 0.032 0.017 0.432 0.393 0.149 0.131 0.062 0.509 0.544 0.244

BetaTCVAE 0.173 0.084 0.638 0.355 0.342 0.165 0.046 0.571 0.366 0.244 0.181 0.146 0.636 0.431 0.344

Weakly/Semi-Supervised Disentanglement Learning

DSD 0.399 0.193 0.612 0.510 0.445 0.402 0.199 0.602 0.621 0.512 0.353 0.222 0.601 0.603 0.522

Ada-ML-VAE 0.293 0.093 0.520 0.439 0.392 0.283 0.131 0.582 0.483 0.270 0.240 0.074 0.576 0.476 0.285

Ada-GVAE 0.347 0.238 0.613 0.501 0.427 0.339 0.227 0.609 0.592 0.479 0.264 0.215 0.602 0.601 0.401

SW-VAE(m) 0.394 0.210 0.592 0.506 0.452 0.401 0.201 0.602 0.591 0.532 0.360 0.216 0.593 0.562 0.542
SW-VAE(e) 0.467 0.213 0.614 0.520 0.554 0.452 0.202 0.614 0.596 0.574 0.484 0.225 0.617 0.565 0.566

4 Experimental Evaluation

4.1 Benchmarks, Baseline Methods and Evaluation Metrics

We use following five different datasets where the images are annotated with different
underlying factor of variations.

dSprites [15] contains 73,728 binary 64 × 64 images generated by 6 generative
factors.

3dShapes [2] generated by 6 generative factors: floor hue, wall hue, object hue,
scale, shape and orientation. The total dataset contains 480,000 RGB 64×64×3 images.

MPI3D [12] contains 3 different datsets: MPI3D-real, MPI3D-toy and MPI3D-
realistic. MPI3D-real is a real world dataset controlled by 7 generative factors: object
color, object shape, object size, camera height, background color, horizontal axis and
vertical axis. MPI3D-toy, MPI3D-realistic are synthetic versions of MPI3D-real with
two levels of realism. Each of the three datasets contains 1,036,800 RGB 512×512×3
images.

SOTA model used for comparisons are: (1) β-VAE [15], (2) AnnealedVAE [3], (3)
FactorVAE [17], (4) DIP-VAE-I [20], (5) DIP-VAE-II [20], (6) β-TCVAE [5], (7) DSD
[10], (8) Ada-ML-VAE [25] and (9) Ada-VAE [25].

Following metrics are used to evaluate the performance of SW-VAE. All metrics are
range from 0 to 1, where the score of 1 indicates the latent factors are fully disentangled.

– Mutual Information Gap (MIG) [5] calculates the difference between the top two
highest mutual information between latent and generative components.
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(a) (b)

(c) (e) (f)

Fig. 6: Disentanglement metrics with varying γ on dSprites. (a) Mutual Information Gap (MIG)
(b) Separated Attribute Predictability (SAP) (c) Interventional Robustness Score (IRS) (d) Fac-
torVAE score (FVAE) (e) DCI-Disentanglement (DCI)

– Separated Attribute Predictability (SAP) [20] calculates the average perdition
error difference between the top two most predictive latent components.

– Interventional Robustness Score (IRS) [32] assesses the degree of dependency
between a latent factor and a generative factor, regardless of additional generative
factors.

– FactorVAE (FVAE) score [17] predicts the index of a fixed generating factor using
a majority vote classifier, and the accuracy is the final score value.

– DCI-Disentanglement (DCI) [9] computes the entropy of the distribution by nor-
malizing across each dimension of the learned representation in order to predict the
value of a generative component.

4.2 Quantitative Results

Tables 1 and 2 show disentanglement metrics results tested on dSprites, 3dshapes,
MPI3D-toy, MPI3D-realistic and MPI3D-real respectively. By observing the results,
SW-VAE outperforms baselines methods in most cases, where SW-VAE(e) consis-
tently outperforms SW-VAE(m). Mean, median, and variance of all disentanglement
metrics scores of all models tested on all datasets are shown Appendix.

4.3 Ablation Study

Effectiveness Of New Regularization: To prove the effectiveness of using the pro-
posed regularization as discussed in Equations (5) to (8), we evaluated SW-VAE(m)
on dSprites using different values of γ. We start experimenting by setting γ = 0, then
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slowly increase the value of γ. We show the change of disentanglement metrics MIG
and DCI scores in Figure 6. We can observe a great improvement by utilizing swapping
concept even if γ is very small. Other metrics results are included in supplementary
materials.

Table 3: Disentanglement metrics of SW-VAE(m) with different training strategies applied to
dSpirits dataset

ISF IGF MIG SAP IRS FVAE DCI

0.232 0.048 0.617 0.790 0.347

✓ 0.439 0.081 0.652 0.872 0.610

✓ ✓ 0.525 0.108 0.677 0.891 0.685

Effectiveness Of Different Training Strategies: As we have discussed in Section 3, we
propose two training strategies (gradually increasing the number of swapped latent fac-
tors (ISF) shown in Figure 4 and gradually increasing the number of different genera-
tive factors (IGF) shown in Figure 5 to help learning representation disentanglement.
We study the importance of these strategies by comparing the results of three differ-
ent situations: (1) No strategy is used; (2) Only IGF strategy is used ; (3) Both IGF
and ISF strategies are used. The result of disentanglement performance evaluated on
dSprites with different strategies are shown in Table 3. Compared to none of the pro-
posed training strategies is used, we can observe significant performance improvement
by adopting IGF strategy. Furthermore, there is additional performance improvement
by utilizing both the ISF and IGF strategies.

5 Conclusion

We introduce SW-VAE: a novel weakly-supervised representation disentanglement method.
The supervision signals are introduced by utilizing pairs of training observations where
the number of different generative factors are controlled. SW-VAE uses the maximum
or exact number of different generative factors as an instruction to swap the latent fac-
tors estimated by the encoder. Further, the comparison between the reconstruction from
the original latent representation and the reconstruction from the new latent represen-
tation serves as new disentanglement regularization. Experimental evaluation demon-
strates that our approach significantly outperforms SOTAs both qualitatively and quan-
titatively.
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search Laboratory under agreement number FA8750-19-1-1000. The views and con-
clusions contained herein are those of the authors and should not be interpreted as nec-
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6 Appendix

6.1 Box plot of All metrics

We show the box plot of MIG scores on all datasets in Fig. 7, SAP scores on all datasets
Fig. 8, IRS scores on all datasets in Fig. 9, FactorVAE scores on all datasets in Fig. 10,
DCI scores on all datasets Fig. 11.
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Fig. 7: Box plot of MIG scores among models tested on different datasets. (a) dSprites (b) 3dSah-
pes (c) MPI3D-toy (d) MPI3D-realistic (e) MPI3D-real

6.2 Traversal visualization

We show the traversal visualization on dSprites in Fig. 12, shapes3d traversal visualiza-
tion in Fig. 13, MPI3D-toy traversal visualization in Fig. 14, MPI3D-realistic traversal
visualization in Fig. 15, MPI3D-real traversal visualization in Fig. 16
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Fig. 8: Box plot of SAP scores among models tested on different datasets. (a) dSprites (b) 3dSah-
pes (c) MPI3D-toy (d) MPI3D-realistic (e) MPI3D-real
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Fig. 9: Box plot of IRS scores among models tested on different datasets. (a) dSprites (b) 3dSahpes
(c) MPI3D-toy (d) MPI3D-realistic (e) MPI3D-real
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Fig. 10: Box plot of FactorVAE scores among models tested on different datasets. (a) dSprites (b)
3dSahpes (c) MPI3D-toy (d) MPI3D-realistic (e) MPI3D-real
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Fig. 11: Box plot of DCI scores among models tested on different datasets. (a) dSprites (b) 3dSah-
pes (c) MPI3D-toy (d) MPI3D-realistic (e) MPI3D-real
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Fig. 12: dSprites dataset traverse visualization. Each row of sub-figure represents: rotation,
shape, x-position, y-position and size. (a) AnnealedVAE (b) β-VAE (c) FactorVAE (d) DIPVAEI
(e) DIPVAEII (f) β-TCVAE (g) β-FactorTCVAE (h) SW-VAE
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Fig. 13: shapes3d dataset traverse visualization. Each row of sub-figure represents: object-color,
orientation, size, floor color and wall-color. (a) AnnealedVAE (b) β-VAE (c) FactorVAE (d) DIP-
VAEI (e) DIPVAEII (f) β-TCVAE (g) β-FactorTCVAE (h) SW-VAE
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Fig. 14: mpi3d-toy dataset traverse visualization. Each row of sub-figure represents: background-
color, object-color, x-rotation, y-rotation. (a) AnnealedVAE (b) β-VAE (c) FactorVAE (d) DIP-
VAEI (e) DIPVAEII (f) β-TCVAE (g) β-FactorTCVAE (h) SW-VAE
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Fig. 15: mpi3d-realistic dataset traverse visualization. Each row of sub-figure represents: x-
rotation, object-color, background-color, y-rotation. (a) AnnealedVAE (b) β-VAE (c) FactorVAE
(d) DIPVAEI (e) DIPVAEII (f) β-TCVAE (g) β-FactorTCVAE (h) SW-VAE



SW-VAE 25

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 16: mpi3d-real dataset traverse visualization. Each row of sub-figure represents: x-rotation,
object-color, size, background-color and y-rotation. (a) AnnealedVAE (b) β-VAE (c) FactorVAE
(d) DIPVAEI (e) DIPVAEII (f) β-TCVAE (g) β-FactorTCVAE (h) SW-VAE
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