Skip to main content

Unsupervised Domain Adaptive Object Detection with Class Label Shift Weighted Local Features

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13802))

Included in the following conference series:

  • 1644 Accesses

Abstract

Due to the high transferability of features extracted from early layers (called local features), aligning marginal distributions of local features has achieved compelling results in unsupervised domain adaptive object detection. However, such marginal feature alignment suffers from the class label shift between source and target domains. Existing class label shift correction methods focus on image classification, and cannot be directly applied to object detection due to objects’ co-occurrence. Meanwhile, one property of local features is that they have small receptive fields and can be easily mapped back to specific areas of input images. Therefore, to handle object co-occurrence scenarios, we propose to leverage this property to decompose the source feature maps and compute the source domain class distribution at the pixel level. The decomposition is based on each feature pixel’s receptive field overlap with ground- truth bounding boxes. In the target domain, where no labels are available, we estimate this distribution using predicted bounding boxes and thus get the estimated class label shift between domains. This estimated shift is further used to re-weight source local features during the feature alignment. To the best of our knowledge, this is the first work trying to explicitly correct class label shift in unsupervised domain adaptive object detection. Experimental results demonstrate that this approach can systematically improve several recent domain adaptive object detectors, such as SW and HTCN on benchmark datasets with different degrees of class label shift.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexandari, A., Kundaje, A., Shrikumar, A.: Maximum likelihood with bias-corrected calibration is hard-to-beat at label shift adaptation. In: ICML (2020)

    Google Scholar 

  2. Azizzadenesheli, K., Liu, A., Yang, F., Anandkumar, A.: Regularized learning for domain adaptation under label shifts. ArXiv: abs/1903.09734 (2019)

  3. Ben-David, Shai, Blitzer, John, Crammer, Koby, Kulesza, Alex, Pereira, Fernando, Vaughan, Jennifer Wortman: A theory of learning from different domains. Mach. Learn. 79(1), 151–175 (2009). https://doi.org/10.1007/s10994-009-5152-4

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, C., Zheng, Z., Ding, X., Huang, Y., Dou, Q.: Harmonizing transferability and discriminability for adapting object detectors. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8866–8875 (2020)

    Google Scholar 

  5. Chen, Y., Li, W., Sakaridis, C., Dai, D., Gool, L.: Domain adaptive faster r-cnn for object detection in the wild. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3339–3348 (2018)

    Google Scholar 

  6. des Combes, R.T., Zhao, H., Wang, Y.X., Gordon, G.: Domain adaptation with conditional distribution matching and generalized label shift. ArXiv: abs/2003.04475 (2020)

  7. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  8. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html

  9. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. ArXiv: abs/1409.7495 (2015)

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  11. He, Z., Zhang, L.: Multi-adversarial faster-rcnn for unrestricted object detection. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6667–6676 (2019)

    Google Scholar 

  12. Hsu, H.K., et al.: Progressive domain adaptation for object detection. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) (2020)

    Google Scholar 

  13. Inoue, N., Furuta, R., Yamasaki, T., Aizawa, K.: Cross-domain weakly-supervised object detection through progressive domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  14. Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: can virtual worlds replace human-generated annotations for real world tasks? In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 746–753. IEEE (2017)

    Google Scholar 

  15. Kifer, D., Ben-David, S., Gehrke, J.: Detecting change in data streams. In: Proceedings of the Thirtieth International Conference on Very Large Data Bases - VLDB 2004, VLDB Endowment, vol. 30. pp. 180–191 (2004)

    Google Scholar 

  16. Kim, T., Jeong, M., Kim, S., Choi, S., Kim, C.: Diversify and match: a domain adaptive representation learning paradigm for object detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12448–12457 (2019)

    Google Scholar 

  17. Li, C., et al.: Spatial attention pyramid network for unsupervised domain adaptation. ArXiv: abs/2003.12979 (2020)

  18. Lipton, Z.C., Wang, Y.X., Smola, A.: Detecting and correcting for label shift with black box predictors. ArXiv: abs/1802.03916 (2018)

  19. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  20. Luo, W., Li, Y., Urtasun, R., Zemel, R.: Understanding the effective receptive field in deep convolutional neural networks. In: NIPS (2016)

    Google Scholar 

  21. Redmon, J., Divvala, S., Girshick, R.B., Farhadi, A.: You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016)

    Google Scholar 

  22. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149 (2015)

    Article  Google Scholar 

  23. Saito, K., Ushiku, Y., Harada, T., Saenko, K.: Strong-weak distribution alignment for adaptive object detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6949–6958 (2019)

    Google Scholar 

  24. Shan, Y., Lu, W., Chew, C.: Pixel and feature level based domain adaption for object detection in autonomous driving. ArXiv: abs/1810.00345 (2019)

  25. Wang, H., Liu, A., Yu, Z., Yue, Y., Anandkumar, A.: Distributionally robust learning for unsupervised domain adaptation. ArXiv: abs/2010.05784 (2020)

  26. Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. ArXiv: abs/1810.08705 (2018)

  27. Xu, C., Zhao, X., Jin, X., Wei, X.S.: Exploring categorical regularization for domain adaptive object detection. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11721–11730 (2020)

    Google Scholar 

  28. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: NIPS (2014)

    Google Scholar 

  29. Zhao, H., des Combes, R.T., Zhang, K., Gordon, G.: On learning invariant representation for domain adaptation. ArXiv: abs/1901.09453 (2019)

  30. Zhao, S., et al.: A review of single-source deep unsupervised visual domain adaptation. In: IEEE Transactions on Neural Networks and Learning Systems, pp. 1–21 (2020). https://doi.org/10.1109/TNNLS.2020.3028503

  31. Zhu, X., Pang, J., Yang, C., Shi, J., Lin, D.: Adapting object detectors via selective cross-domain alignment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  32. Zhuang, C., Han, X., Huang, W., Scott, M.: ifan: image-instance full alignment networks for adaptive object detection. In: AAAI (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andong Tan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 208 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tan, A., Hanselmann, N., Ding, S., Tombari, F., Cordts, M. (2023). Unsupervised Domain Adaptive Object Detection with Class Label Shift Weighted Local Features. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13802. Springer, Cham. https://doi.org/10.1007/978-3-031-25063-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25063-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25062-0

  • Online ISBN: 978-3-031-25063-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics