Skip to main content

OpenCoS: Contrastive Semi-supervised Learning for Handling Open-Set Unlabeled Data

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13802))

Included in the following conference series:

  • 2422 Accesses

Abstract

Semi-supervised learning (SSL) has been a powerful strategy to incorporate few labels in learning better representations. In this paper, we focus on a practical scenario that one aims to apply SSL when unlabeled data may contain out-of-class samples - those that cannot have one-hot encoded labels from a closed-set of classes in label data, i.e., the unlabeled data is an open-set. Specifically, we introduce OpenCoS, a simple framework for handling this realistic semi-supervised learning scenario based upon a recent framework of self-supervised visual representation learning. We first observe that the out-of-class samples in the open-set unlabeled dataset can be identified effectively via self-supervised contrastive learning. Then, OpenCoS utilizes this information to overcome the failure modes in the existing state-of-the-art semi-supervised methods, by utilizing one-hot pseudo-labels and soft-labels for the identified in- and out-of-class unlabeled data, respectively. Our extensive experimental results show the effectiveness of OpenCoS under the presence of out-of-class samples, fixing up the state-of-the-art semi-supervised methods to be suitable for diverse scenarios involving open-set unlabeled data.

J. Park and S. Yun—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Nevertheless, our framework is not restricted to a single method of SimCLR: e.g., we also show that OpenCoS can be applicable with DINO [5], another recent self-supervised learning scheme (see Sect. 5).

  2. 2.

    The detection performances with various choices of t are provided in Section D.2 of the supplementary material.

  3. 3.

    If \(\mathcal {D}_{l}\cup \mathcal {D}_{l}^{\text {pseudo}}\) is class-imbalanced, we apply oversampling method [22] for balancing class distributions.

  4. 4.

    https://tiny-imagenet.herokuapp.com/.

  5. 5.

    Note that this architecture is larger than Wide-ResNet-28-2 [47] used in the SSL literature [34]. We use ResNet-50 following the standard of SimCLR.

  6. 6.

    Nevertheless, we observe that OpenCoS also improves the opposite choices, i.e., FixMatch for CIFAR and ReMixMatch for ImageNet as presented in the supplementary materials..

References

  1. Bendale, A., Boult, T.E.: Towards open set deep networks. In: CVPR (2016)

    Google Scholar 

  2. Bergman, L., Hoshen, Y.: Classification-based anomaly detection for general data. In: ICLR (2020)

    Google Scholar 

  3. Berthelot, D., et al.: Remixmatch: semi-supervised learning with distribution matching and augmentation anchoring. In: ICLR (2020)

    Google Scholar 

  4. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A.: Mixmatch: a holistic approach to semi-supervised learning. In: NeurIPS (2019)

    Google Scholar 

  5. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin, A.: Emerging properties in self-supervised vision transformers. In: ICCV (2021)

    Google Scholar 

  6. Chapelle, O., Scholkopf, B., Zien, A.: Semi-supervised learning. IEEE Trans. Neural Networks 20(3), 542–542 (2009)

    Article  Google Scholar 

  7. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML (2020)

    Google Scholar 

  8. Chen, T., Kornblith, S., Swersky, K., Norouzi, M., Hinton, G.: Big self-supervised models are strong semi-supervised learners. In: NeurIPS (2020)

    Google Scholar 

  9. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)

  10. Chen, Y., Zhu, X., Li, W., Gong, S.: Semi-supervised learning under class distribution mismatch. In: AAAI (2020)

    Google Scholar 

  11. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: practical data augmentation with no separate search. arXiv preprint arXiv:1909.13719 (2019)

  12. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  13. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  14. Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. In: NeurIPS (2004)

    Google Scholar 

  15. Guo, L.Z., Zhang, Z.Y., Jiang, Y., Li, Y.F., Zhou, Z.H.: Safe deep semi-supervised learning for unseen-class unlabeled data. In: ICML (2020)

    Google Scholar 

  16. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR (2020)

    Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  18. Hénaff, O.J., et al.: Data-efficient image recognition with contrastive predictive coding. arXiv preprint arXiv:1905.09272 (2019)

  19. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. In: ICLR (2017)

    Google Scholar 

  20. Hendrycks, D., Mazeika, M., Dietterich, T.: Deep anomaly detection with outlier exposure. In: ICLR (2019)

    Google Scholar 

  21. Hendrycks, D., Mazeika, M., Kadavath, S., Song, D.: Using self-supervised learning can improve model robustness and uncertainty. In: NeurIPS (2019)

    Google Scholar 

  22. Japkowicz, N.: The class imbalance problem: significance and strategies. In: Proceedings of the International Conference on Artificial Intelligence (2000)

    Google Scholar 

  23. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images. Tech. rep, Citeseer (2009)

    Google Scholar 

  24. Lee, D.H.: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In: ICML Workshop (2013)

    Google Scholar 

  25. Lee, K., Lee, H., Lee, K., Shin, J.: Training confidence-calibrated classifiers for detecting out-of-distribution samples. In: ICLR (2018)

    Google Scholar 

  26. Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-of-distribution samples and adversarial attacks. In: NeurIPS (2018)

    Google Scholar 

  27. Lee, K., Yun, S., Lee, K., Lee, H., Li, B., Shin, J.: Robust inference via generative classifiers for handling noisy labels. In: ICML (2019)

    Google Scholar 

  28. Li, Z., Hoiem, D.: Learning without forgetting. In: ECCV (2016)

    Google Scholar 

  29. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image detection in neural networks. In: ICLR (2018)

    Google Scholar 

  30. Liu, Y., Gao, T., Yang, H.: Selectnet: learning to sample from the wild for imbalanced data training. In: MSML (2020)

    Google Scholar 

  31. Miyato, T., Maeda, S.i., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1979–1993 (2018)

    Google Scholar 

  32. Nair, V., Alonso, J.F., Beltramelli, T.: Realmix: towards realistic semi-supervised deep learning algorithms. arXiv preprint arXiv:1912.08766 (2019)

  33. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NeurIPS Workshop (2011)

    Google Scholar 

  34. Oliver, A., Odena, A., Raffel, C.A., Cubuk, E.D., Goodfellow, I.: Realistic evaluation of deep semi-supervised learning algorithms. In: NeurIPS (2018)

    Google Scholar 

  35. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  36. Raina, R., Battle, A., Lee, H., Packer, B., Ng, A.Y.: Self-taught learning: transfer learning from unlabeled data. In: ICML (2007)

    Google Scholar 

  37. Saito, K., Kim, D., Saenko, K.: Openmatch: open-set consistency regularization for semi-supervised learning with outliers. In: NeurIPS (2021)

    Google Scholar 

  38. Sajjadi, M., Javanmardi, M., Tasdizen, T.: Regularization with stochastic transformations and perturbations for deep semi-supervised learning. In: NeurIPS (2016)

    Google Scholar 

  39. Sergey Ioffe, C.S.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015)

    Google Scholar 

  40. Sohn, K., et al.: Fixmatch: simplifying semi-supervised learning with consistency and confidence. In: NeurIPS (2020)

    Google Scholar 

  41. Tack, J., Mo, S., Jeong, J., Shin, J.: Csi: novelty detection via contrastive learning on distributionally shifted instances. In: NeurIPS (2020)

    Google Scholar 

  42. Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., Madry, A.: Robustness may be at odds with accuracy. In: ICLR (2019)

    Google Scholar 

  43. Wang, Y., et al.: Iterative learning with open-set noisy labels. In: CVPR (2018)

    Google Scholar 

  44. Wu, Z., Xiong, Y., Yu, S., Lin, D.: Unsupervised feature learning via non-parametric instance-level discrimination. In: CVPR (2018)

    Google Scholar 

  45. Xie, C., Tan, M., Gong, B., Wang, J., Yuille, A., Le, Q.V.: Adversarial examples improve image recognition. In: CVPR (2020)

    Google Scholar 

  46. Xie, Q., Dai, Z., Hovy, E., Luong, M.T., Le, Q.V.: Unsupervised data augmentation for consistency training. arXiv preprint arXiv:1904.12848 (2019)

  47. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: BMVC (2016)

    Google Scholar 

  48. Zhai, X., Oliver, A., Kolesnikov, A., Beyer, L.: S4l: Self-supervised semi-supervised learning. In: ICCV (2019)

    Google Scholar 

  49. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. In: ICLR (2018)

    Google Scholar 

  50. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongjin Park .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 495 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Park, J., Yun, S., Jeong, J., Shin, J. (2023). OpenCoS: Contrastive Semi-supervised Learning for Handling Open-Set Unlabeled Data. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13802. Springer, Cham. https://doi.org/10.1007/978-3-031-25063-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25063-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25062-0

  • Online ISBN: 978-3-031-25063-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics