Skip to main content

Complementary Phase Encoding for Pair-Wise Neural Deblurring of Accelerated Brain MRI

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13803))

Included in the following conference series:

  • 2324 Accesses

Abstract

MRI has become an invaluable tool for diagnostic brain imaging, providing unrivalled qualitative and quantitative information to the radiologist. However, due to long scanning times and capital costs, access to MRI lags behind CT. Typical brain protocols lasting over 30 min set a clear limitation to patient experience, scanner throughput, operation profitability, and lead to long waiting times for an appointment.

As image quality, in terms of spatial resolution and noise, is strongly dependent on acquisition duration, significant scanning acceleration must successfully address challenging image degradation. In this work, we consider the scan acceleration scenario of a strongly anisotropic acquisition matrix. We propose a neural approach that jointly deblurs scan pairs acquired with mutually orthogonal phase encoding directions. This leverages the complementarity of the respective phase encoded information as blur directions are also mutually orthogonal between the scans in the pair. The proposed architecture, trained end-to-end, is applied to T1w scan pairs consisting of one scan with contrast media injection (CMI), and one without. Qualitative and quantitative validation is provided against state-of-the-art deblurring methods, for an acceleration factor of 4 beyond compressed sensing acceleration. The proposed method outperforms the compared methods, suggesting its possible clinical applicability for this challenging task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Accelmr 2020 prediction challenge (2020). https://accelmrorg.wordpress.com/

  2. Bevilacqua, M., Roumy, A., Guillemot, C., line Alberi Morel, M.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: Proceedings of the British Machine Vision Conference, pp. 135.1–135.10. BMVA Press (2012). https://doi.org/10.5244/C.26.135

  3. Edelstein, W.A., Hutchison, J.M.S., Johnson, G., Redpath, T.: Spin warp NMR imaging and applications to human whole-body imaging. Phys. Med. Biol. 25(4), 751–756 (1980). https://doi.org/10.1088/0031-9155/25/4/017

    Article  Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015). https://doi.org/10.48550/ARXIV.1512.03385, https://arxiv.org/abs/1512.03385

  5. Hollingsworth, K.G.: Reducing acquisition time in clinical MRI by data undersampling and compressed sensing reconstruction. Phys. Med. Biol. 60(21), 297–322 (2015)

    Article  Google Scholar 

  6. Iwamoto, Y., Takeda, K., Li, Y., Shiino, A., Chen, Y.W.: Unsupervised MRI super-resolution using deep external learning and guided residual dense network with multimodal image priors (2020)

    Google Scholar 

  7. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution (2016). https://doi.org/10.48550/ARXIV.1603.08155, https://arxiv.org/abs/1603.08155

  8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). https://doi.org/10.48550/ARXIV.1412.6980, https://arxiv.org/abs/1412.6980

  9. Kiryati, N., Landau, Y.: Dataset growth in medical image analysis research. J. Imaging 7, 155 (2021). https://doi.org/10.3390/jimaging7080155

  10. Klein*, S., Staring*, M., Murphy, K., Viergever, M.A., Pluim, J.P.: elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Medical Imag. 29(1), 196–205 (2010)

    Google Scholar 

  11. Knoll, F., et al.: Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge. Magn. Reson. Med. 84(6), 3054–3070 (2020). https://doi.org/10.1002/mrm.28338

  12. Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: Deblurgan: blind motion deblurring using conditional adversarial networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8183–8192 (2018). https://doi.org/10.1109/CVPR.2018.00854

  13. Kupyn, O., Martyniuk, T., Wu, J., Wang, Z.: Deblurgan-v2: deblurring (orders-of-magnitude) faster and better. In: The IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  14. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network (2016). https://doi.org/10.48550/ARXIV.1609.04802, https://arxiv.org/abs/1609.04802

  15. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts (2016). https://doi.org/10.48550/ARXIV.1608.03983, https://arxiv.org/abs/1608.03983

  16. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007). https://doi.org/10.1002/mrm.21391

    Article  Google Scholar 

  17. Lustig, M., Donoho, D.L., Santos, J.M., Pauly, J.M.: Compressed sensing MRI. IEEE Signal Process. Maga. 25(2), 72–82 (2008). https://doi.org/10.1109/MSP.2007.914728

    Article  Google Scholar 

  18. Mayberg, M., et al.: Anisotropic neural deblurring for MRI acceleration. Int. J. Comput. Assist. Radiol. Surg. 17(2), 315–327 (2021). https://doi.org/10.1007/s11548-021-02535-6

    Article  Google Scholar 

  19. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, vol. 2, pp. 416–423 (2001). https://doi.org/10.1109/ICCV.2001.937655

  20. Mei, Y., et al.: Pyramid attention networks for image restoration (2020). https://doi.org/10.48550/ARXIV.2004.13824, https://arxiv.org/abs/2004.13824

  21. Pham, C.H., Tor-Díez, C., Meunier, H., Bednarek, N., Fablet, R., Passat, N., Rousseau, F.: Multiscale brain MRI super-resolution using deep 3D convolutional networks. Comput. Med. Imaging Graph. 77, 101647 (2019). https://doi.org/10.1016/j.compmedimag.2019.101647

    Article  Google Scholar 

  22. Shamonin, D.P., Bron, E.E., Lelieveldt, B.P., Smits, M., Klein, S., Staring, M.: Fast parallel image registration on cpu and gpu for diagnostic classification of alzheimer’s disease. Front. Neuroinf. 7(50), 1–15 (2014)

    Google Scholar 

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). https://doi.org/10.48550/ARXIV.1409.1556, https://arxiv.org/abs/1409.1556

  24. Tsiligianni, E., Zerva, M., Marivani, I., Deligiannis, N., Kondi, L.: Interpretable deep learning for multimodal super-resolution of medical images. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 421–429. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_41

    Chapter  Google Scholar 

  25. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  26. Xiang, L., et al.: Deep-learning-based multi-modal fusion for fast mr reconstruction. IEEE Trans. Biomed. Eng. 66(7), 2105–2114 (2019). https://doi.org/10.1109/TBME.2018.2883958

    Article  Google Scholar 

  27. Yang, G., et al.: Dagan: deep de-aliasing generative adversarial networks for fast compressed sensing mri reconstruction. IEEE Trans. Med. Imaging 37(6), 1310–1321 (2018). https://doi.org/10.1109/TMI.2017.2785879

    Article  Google Scholar 

  28. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., Chenin, P., Cohen, A., Gout, C., Lyche, T., Mazure, M.-L., Schumaker, L. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  29. Zhou, B., Zhou, S.K.: Dudornet: learning a dual-domain recurrent network for fast mri reconstruction with deep t1 prior (2020). https://doi.org/10.48550/ARXIV.2001.03799, https://arxiv.org/abs/2001.03799

Download references

Acknowledgements

Gali Hod would like to thank the Israeli Ministry of Science and Technology for supporting her under the scholarship program during the research period.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gali Hod .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hod, G. et al. (2023). Complementary Phase Encoding for Pair-Wise Neural Deblurring of Accelerated Brain MRI. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13803. Springer, Cham. https://doi.org/10.1007/978-3-031-25066-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25066-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25065-1

  • Online ISBN: 978-3-031-25066-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics