Skip to main content

Joint Calibrationless Reconstruction and Segmentation of Parallel MRI

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13803))

Included in the following conference series:

  • 3503 Accesses

Abstract

The volume estimation of brain regions from MRI data is a key problem in many clinical applications, where the acquisition of data at high spatial resolution is desirable. While parallel MRI and constrained image reconstruction algorithms can accelerate the scans, image reconstruction artifacts are inevitable, especially at high acceleration factors. We introduce a novel image domain deep-learning framework for calibrationless parallel MRI reconstruction, coupled with a segmentation network to improve image quality and to reduce the vulnerability of current segmentation algorithms to image artifacts resulting from acceleration. Combination of the proposed calibrationless approach with a segmentation algorithm offers improved image quality, while improving segmentation accuracy. The novel architecture with an encoder shared between the reconstruction and segmentation tasks is seen to reduce the need for segmented training datasets. In particular, the proposed few-shot training strategy requires only 10% of segmented datasets to offer good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aggarwal, H.K., Mani, M.P., Jacob, M.: MoDL: model-based deep learning architecture for inverse problems. IEEE Trans. Med. Imaging 38(2), 394–405 (2018)

    Article  Google Scholar 

  2. Carlesimo, G.A., Piras, F., Orfei, M.D., Iorio, M., Caltagirone, C., Spalletta, G.: Atrophy of presubiculum and subiculum is the earliest hippocampal anatomical marker of Alzheimer’s disease. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 1(1), 24–32 (2015)

    Google Scholar 

  3. Chételat, G.: Multimodal neuroimaging in Alzheimer’s disease: early diagnosis, physiopathological mechanisms, and impact of lifestyle. J. Alzheimers Dis. 64(s1), S199–S211 (2018)

    Article  Google Scholar 

  4. De Flores, R., La Joie, R., Chételat, G.: Structural imaging of hippocampal subfields in healthy aging and Alzheimer’s disease. Neuroscience 309, 29–50 (2015)

    Article  Google Scholar 

  5. Eo, T., Jun, Y., Kim, T., Jang, J., Lee, H.J., Hwang, D.: KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images. Magn. Reson. Med. 80(5), 2188–2201 (2018)

    Article  Google Scholar 

  6. Feyjie, A.R., Azad, R., Pedersoli, M., Kauffman, C., Ayed, I.B., Dolz, J.: Semi-supervised few-shot learning for medical image segmentation. arXiv preprint arXiv:2003.08462 (2020)

  7. Gidaris, S., Bursuc, A., Komodakis, N., Pérez, P., Cord, M.: Boosting few-shot visual learning with self-supervision. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8059–8068 (2019)

    Google Scholar 

  8. Griswold, et al.: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 47(6), 1202–1210 (2002)

    Google Scholar 

  9. Haldar, J.P.: Low-rank modeling of local \(k\)-space neighborhoods (LORAKS) for constrained MRI. IEEE Trans. Med. Imaging 33(3), 668–681 (2013)

    Article  Google Scholar 

  10. Hammernik, et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018)

    Google Scholar 

  11. Han, Y., Sunwoo, L., Ye, J.C.: K-space deep learning for accelerated MRI. IEEE Trans. Med. Imaging 39(2), 377–386 (2019)

    Article  Google Scholar 

  12. Huang, Q., Yang, D., Yi, J., Axel, L., Metaxas, D.: FR-Net: joint reconstruction and segmentation in compressed sensing cardiac MRI. In: Coudière, Y., Ozenne, V., Vigmond, E., Zemzemi, N. (eds.) FIMH 2019. LNCS, vol. 11504, pp. 352–360. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21949-9_38

    Chapter  Google Scholar 

  13. Iglesias, et al.: A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: application to adaptive segmentation of in vivo MRI. Neuroimage 115, 117–137 (2015)

    Google Scholar 

  14. Jadon, S.: A survey of loss functions for semantic segmentation. In: 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–7. IEEE (2020)

    Google Scholar 

  15. Liang, D., Liu, B., Wang, J., Ying, L.: Accelerating SENSE using compressed sensing. Magn. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 62(6), 1574–1584 (2009)

    Article  Google Scholar 

  16. Liu, D., Wen, B., Liu, X., Wang, Z., Huang, T.S.: When image denoising meets high-level vision tasks: a deep learning approach. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp. 842–848 (2018)

    Google Scholar 

  17. Lüsebrink, F., Wollrab, A., Speck, O.: Cortical thickness determination of the human brain using high resolution 3 T and 7 T MRI data. Neuroimage 70, 122–131 (2013)

    Article  Google Scholar 

  18. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  19. Mani, M., Jacob, M., Kelley, D., Magnotta, V.: Multi-shot sensitivity-encoded diffusion data recovery using structured low-rank matrix completion (MUSSELS). Magn. Reson. Med. 78(2), 494–507 (2017)

    Article  Google Scholar 

  20. Oksuz, et al.: Deep learning-based detection and correction of cardiac MR motion artefacts during reconstruction for high-quality segmentation. IEEE Trans. Med. Imaging 39(12), 4001–4010 (2020)

    Google Scholar 

  21. Pramanik, A., Aggarwal, H.K., Jacob, M.: Deep generalization of structured low-rank algorithms (Deep-SLR). IEEE Trans. Med. Imaging 39(12), 4186–4197 (2020)

    Article  Google Scholar 

  22. Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P.: SENSE: sensitivity encoding for fast MRI. Magn. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 42(5), 952–962 (1999)

    Article  Google Scholar 

  23. Pruessner, et al.: Volumetry of hippocampus and amygdala with high-resolution MRI and three-dimensional analysis software: minimizing the discrepancies between laboratories. Cereb. Cortex 10(4), 433–442 (2000)

    Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  25. Schlemper, J., Caballero, J., Hajnal, J.V., Price, A.N., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37(2), 491–503 (2017)

    Article  Google Scholar 

  26. Shin, et al.: Calibrationless parallel imaging reconstruction based on structured low-rank matrix completion. Magn. Reson. Med. 72(4), 959–970 (2014)

    Google Scholar 

  27. Souza, et al.: An open, multi-vendor, multi-field-strength brain MR dataset and analysis of publicly available skull stripping methods agreement. NeuroImage 170, 482–494 (2018)

    Google Scholar 

  28. Sun, L., Fan, Z., Ding, X., Huang, Y., Paisley, J.: Joint CS-MRI reconstruction and segmentation with a unified deep network. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 492–504. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_38

    Chapter  Google Scholar 

  29. Trzasko, J.D., Manduca, A.: CLEAR: calibration-free parallel imaging using locally low-rank encouraging reconstruction. In: Proceedings of the 20th Annual Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM), vol. 517 (2012)

    Google Scholar 

  30. Uecker, et al.: ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn. Reson. Med. 71(3), 990–1001 (2014)

    Google Scholar 

  31. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  32. Zaitsev, M., Maclaren, J., Herbst, M.: Motion artifacts in MRI: a complex problem with many partial solutions. J. Magn. Reson. Imaging 42(4), 887–901 (2015)

    Article  Google Scholar 

  33. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniket Pramanik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pramanik, A., Jacob, M. (2023). Joint Calibrationless Reconstruction and Segmentation of Parallel MRI. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13803. Springer, Cham. https://doi.org/10.1007/978-3-031-25066-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25066-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25065-1

  • Online ISBN: 978-3-031-25066-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics