Skip to main content

Implicit Map Augmentation for Relocalization

  • Conference paper
  • First Online:
Book cover Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13803))

Included in the following conference series:

Abstract

Learning neural radiance fields (NeRF) has recently revolutionized novel view synthesis and related topics. The fact that the implicit scene models learned via NeRF greatly extend the representational capability compared with sparse maps, however, is largely overlooked. In this paper, we propose implicit map augmentation (IMA) that utilizes implicit scene representations to augment the sparse maps and help with visual relocalization. Given a sparse map reconstructed by structure-from-motion (SfM) or SLAM, the method first trains a NeRF model conditioned on the sparse reconstruction. Then an augmented sparse map representation can be sampled from the NeRF model to render better relocalization performance. Unlike the existing implicit mapping and pose estimation methods based on NeRF, IMA takes a hybrid approach by bridging the sparse map representation with MLP-based implicit representation in a non-intrusive way. The experiments demonstrate that our approach achieves better relocalization results with the augmented maps on challenging views. We also show that the resulting augmented maps not only remove the noisy 3D points but also bring back missing details that get discarded during the sparse reconstruction, which helps visual relocalization in wide-baseline scenarios.

Y. Hou—Work done during internship at Reality Labs, Meta.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bleyer, M., Rhemann, C., Rother, C.: Patchmatch stereo-stereo matching with slanted support windows. In: Proceedings of the British Machine Vision Conference (BMVC), vol. 11, pp. 1–11 (2011)

    Google Scholar 

  2. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet: richly-annotated 3D reconstructions of indoor scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  3. Deng, K., Liu, A., Zhu, J.Y., Ramanan, D.: Depth-supervised nerf: Fewer views and faster training for free. arXiv preprint arXiv:2107.02791 (2021)

  4. DeTone, D., Malisiewicz, T., Rabinovich, A.: Superpoint: self-supervised interest point detection and description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 224–236 (2018)

    Google Scholar 

  5. Dusmanu, M., et al.: D2-Net: a trainable CNN for joint detection and description of local features. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  6. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  7. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  8. Gallup, D., Frahm, J.M., Mordohai, P., Yang, Q., Pollefeys, M.: Real-time plane-sweeping stereo with multiple sweeping directions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8. IEEE (2007)

    Google Scholar 

  9. Goesele, M., Curless, B., Seitz, S.M.: Multi-view stereo revisited. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 2402–2409. IEEE (2006)

    Google Scholar 

  10. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004). ISBN 0521540518

    Google Scholar 

  11. Heng, L., et al.: Project autovision: localization and 3D scene perception for an autonomous vehicle with a multi-camera system. In: International Conference on Robotics and Automation (ICRA), pp. 4695–4702. IEEE (2019)

    Google Scholar 

  12. Hou, Y., Kannala, J., Solin, A.: Multi-view stereo by temporal nonparametric fusion. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2651–2660 (2019)

    Google Scholar 

  13. Humenberger, M., et al.: Robust image retrieval-based visual localization using kapture. arXiv preprint arXiv:2007.13867 (2020)

  14. Im, S., Jeon, H., Lin, S., Kweon, I.S.: DPSnet: end-to-end deep plane sweep stereo. In: 7th International Conference on Learning Representations (ICLR) (2019)

    Google Scholar 

  15. Irschara, A., Zach, C., Frahm, J.M., Bischof, H.: From structure-from-motion point clouds to fast location recognition. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2599–2606. IEEE (2009)

    Google Scholar 

  16. Kendall, A., Grimes, M., Cipolla, R.: Posenet: a convolutional network for real-time 6-DOF camera relocalization. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2938–2946 (2015)

    Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference for Learning Representations (ICLR) (2015)

    Google Scholar 

  18. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234. IEEE (2007)

    Google Scholar 

  19. Kneip, L., Scaramuzza, D., Siegwart, R.: A novel parametrization of the perspective-three-point problem for a direct computation of absolute camera position and orientation. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2969–2976. IEEE (2011)

    Google Scholar 

  20. Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving. Int. J. Comput. Vision 38(3), 199–218 (2000)

    Article  MATH  Google Scholar 

  21. Li, Z., et al.: Learning the depths of moving people by watching frozen people. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4521–4530 (2019)

    Google Scholar 

  22. Lin, C.H., Ma, W.C., Torralba, A., Lucey, S.: Barf: bundle-adjusting neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5741–5751 (2021)

    Google Scholar 

  23. Liu, L., Li, H., Dai, Y.: Efficient global 2D–3D matching for camera localization in a large-scale 3D map. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2372–2381 (2017)

    Google Scholar 

  24. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  25. Luo, X., Huang, J.B., Szeliski, R., Matzen, K., Kopf, J.: Consistent video depth estimation. ACM Trans. Graph. (ToG) 39(4), 71–1 (2020)

    Article  Google Scholar 

  26. Merrell, P., et al.: Real-time visibility-based fusion of depth maps. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1–8. IEEE (2007)

    Google Scholar 

  27. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4460–4470 (2019)

    Google Scholar 

  28. Michalkiewicz, M., Pontes, J.K., Jack, D., Baktashmotlagh, M., Eriksson, A.: Implicit surface representations as layers in neural networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4743–4752 (2019)

    Google Scholar 

  29. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24

    Chapter  Google Scholar 

  30. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. arXiv preprint arXiv:2201.05989 (2022)

  31. Murez, Z., van As, T., Bartolozzi, J., Sinha, A., Badrinarayanan, V., Rabinovich, A.: Atlas: end-to-end 3D scene reconstruction from posed images. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 414–431. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_25

    Chapter  Google Scholar 

  32. Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: Dtam: dense tracking and mapping in real-time. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2320–2327. IEEE (2011)

    Google Scholar 

  33. Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric rendering: learning implicit 3D representations without 3D supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  34. Oechsle, M., Peng, S., Geiger, A.: Unisurf: unifying neural implicit surfaces and radiance fields for multi-view reconstruction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5589–5599 (2021)

    Google Scholar 

  35. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 165–174 (2019)

    Google Scholar 

  36. Revaud, J., Almazán, J., Rezende, R.S., Souza, C.R.d.: Learning with average precision: Training image retrieval with a listwise loss. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5107–5116 (2019)

    Google Scholar 

  37. Revaud, J., et al.: R2d2: repeatable and reliable detector and descriptor. arXiv preprint arXiv:1906.06195 (2019)

  38. Roessle, B., Barron, J.T., Mildenhall, B., Srinivasan, P.P., Nießner, M.: Dense depth priors for neural radiance fields from sparse input views. arXiv preprint arXiv:2112.03288 (2021)

  39. Sarlin, P.E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: robust hierarchical localization at large scale. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12716–12725 (2019)

    Google Scholar 

  40. Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: Superglue: learning feature matching with graph neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4938–4947 (2020)

    Google Scholar 

  41. Sattler, T., Havlena, M., Radenovic, F., Schindler, K., Pollefeys, M.: Hyperpoints and fine vocabularies for large-scale location recognition. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2102–2110 (2015)

    Google Scholar 

  42. Sattler, T., Leibe, B., Kobbelt, L.: Fast image-based localization using direct 2D-to-3D matching. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 667–674. IEEE (2011)

    Google Scholar 

  43. Sattler, T., Leibe, B., Kobbelt, L.: Improving image-based localization by active correspondence search. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 752–765. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33718-5_54

    Chapter  Google Scholar 

  44. Sattler, T., Leibe, B., Kobbelt, L.: Efficient & effective prioritized matching for large-scale image-based localization. IEEE Trans. Pattern Anal. Mach. Intell. 39(9), 1744–1756 (2016)

    Article  Google Scholar 

  45. Schönberger, J.L., Zheng, E., Frahm, J.-M., Pollefeys, M.: Pixelwise view selection for unstructured multi-view stereo. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 501–518. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_31

    Chapter  Google Scholar 

  46. Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  47. Seitz, S.M., Dyer, C.R.: Photorealistic scene reconstruction by voxel coloring. Int. J. Comput. Vision 35(2), 151–173 (1999)

    Article  Google Scholar 

  48. Shotton, J., Glocker, B., Zach, C., Izadi, S., Criminisi, A., Fitzgibbon, A.: Scene coordinate regression forests for camera relocalization in RGB-D images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2930–2937 (2013)

    Google Scholar 

  49. Sucar, E., Liu, S., Ortiz, J., Davison, A.J.: imap: Implicit mapping and positioning in real-time. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6229–6238 (2021)

    Google Scholar 

  50. Sun, J., Xie, Y., Chen, L., Zhou, X., Bao, H.: Neuralrecon: real-time coherent 3D reconstruction from monocular video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15598–15607 (2021)

    Google Scholar 

  51. Svarm, L., Enqvist, O., Oskarsson, M., Kahl, F.: Accurate localization and pose estimation for large 3D models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 532–539 (2014)

    Google Scholar 

  52. Sweeney, C., Sattler, T., Hollerer, T., Turk, M., Pollefeys, M.: Optimizing the viewing graph for structure-from-motion. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 801–809 (2015)

    Google Scholar 

  53. Taira, H., et al.: Inloc: indoor visual localization with dense matching and view synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7199–7209 (2018)

    Google Scholar 

  54. Tran, N.T., et al.: On-device scalable image-based localization via prioritized cascade search and fast one-many RANSAC. IEEE Trans. Image Process. 28(4), 1675–1690 (2018)

    Article  MathSciNet  Google Scholar 

  55. Vogiatzis, G., Torr, P.H., Cipolla, R.: Multi-view stereo via volumetric graph-cuts. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 391–398. IEEE (2005)

    Google Scholar 

  56. Wang, K., Shen, S.: Mvdepthnet: real-time multiview depth estimation neural network. In: 2018 International conference on 3D vision (3DV), pp. 248–257. IEEE (2018)

    Google Scholar 

  57. Wei, Y., Liu, S., Rao, Y., Zhao, W., Lu, J., Zhou, J.: NerfingMVS: guided optimization of neural radiance fields for indoor multi-view stereo. In: ICCV (2021)

    Google Scholar 

  58. Xu, Q., Wang, W., Ceylan, D., Mech, R., Neumann, U.: DISN: deep implicit surface network for high-quality single-view 3D reconstruction. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 32 (2019)

    Google Scholar 

  59. Yao, Y., Luo, Z., Li, S., Fang, T., Quan, L.: MVSNet: depth inference for unstructured multi-view stereo. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 785–801. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_47

    Chapter  Google Scholar 

  60. Yen-Chen, L., Florence, P., Barron, J.T., Rodriguez, A., Isola, P., Lin, T.Y.: iNeRF: inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2021)

    Google Scholar 

  61. Zhang, K., Riegler, G., Snavely, N., Koltun, V.: Nerf++: analyzing and improving neural radiance fields. arXiv preprint arXiv:2010.07492 (2020)

  62. Zhou, Y., et al.: DA4AD: end-to-end deep attention-based visual localization for autonomous driving. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12373, pp. 271–289. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58604-1_17

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianwei Shen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 476 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hou, Y. et al. (2023). Implicit Map Augmentation for Relocalization. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13803. Springer, Cham. https://doi.org/10.1007/978-3-031-25066-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25066-8_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25065-1

  • Online ISBN: 978-3-031-25066-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics