Skip to main content

Efficient and Accurate Quantized Image Super-Resolution on Mobile NPUs, Mobile AI & AIM 2022 Challenge: Report

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13803))

Included in the following conference series:

Abstract

Image super-resolution is a common task on mobile and IoT devices, where one often needs to upscale and enhance low-resolution images and video frames. While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints. In this Mobile AI challenge, we address this problem and propose the participants to design an efficient quantized image super-resolution solution that can demonstrate a real-time performance on mobile NPUs. The participants were provided with the DIV2K dataset and trained INT8 models to do a high-quality 3X image upscaling. The runtime of all models was evaluated on the Synaptics VS680 Smart Home board with a dedicated edge NPU capable of accelerating quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 60 FPS rate when reconstructing Full HD resolution images. A detailed description of all models developed in the challenge is provided in this paper.

A. Ignatov, R. Timofte, M. Denna and A. Younes—Are the Mobile AI & AIM 2022 challenge organizers. The other authors participated in the challenge.

Appendix A contains the authors’ team names and affiliations.

Mobile AI 2022 Workshop website:

https://ai-benchmark.com/workshops/mai/2022/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://ai-benchmark.com/download.

  2. 2.

    https://play.google.com/store/apps/details?id=org.benchmark.demo.

References

  1. Abdelhamed, A., Afifi, M., Timofte, R., Brown, M.S.: Ntire 2020 challenge on real image denoising: dataset, methods and results. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 496–497 (2020)

    Google Scholar 

  2. Abdelhamed, A., Timofte, R., Brown, M.S.: Ntire 2019 challenge on real image denoising: Methods and results. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  3. Agustsson, E., Timofte, R.: Ntire 2017 challenge on single image super-resolution: dataset and study. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 126–135 (2017)

    Google Scholar 

  4. Anwar, S., Hwang, K., Sung, W.: Structured pruning of deep convolutional neural networks. ACM J. Emerg. Technol. Comput. Syst. (JETC) 13(3), 1–18 (2017)

    Article  Google Scholar 

  5. Anwar, S., Sung, W.: Compact deep convolutional neural networks with coarse pruning. arXiv preprint arXiv:1610.09639 (2016)

  6. Ayazoglu, M.: Extremely lightweight quantization robust real-time single-image super resolution for mobile devices. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2021)

    Google Scholar 

  7. Ayazoglu, M., Bilecen, B.B.: XCAT - lightweight quantized single image super-resolution using heterogeneous group convolutions and cross concatenation. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2022)

    Google Scholar 

  8. Bhardwaj, K., et al.: Collapsible linear blocks for super-efficient super resolution. Proc. Mach. Learn. Syst. 4, 529–547 (2022)

    Google Scholar 

  9. Cai, J., Gu, S., Timofte, R., Zhang, L.: Ntire 2019 challenge on real image super-resolution: methods and results. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  10. Cai, Y., Yao, Z., Dong, Z., Gholami, A., Mahoney, M.W., Keutzer, K.: Zeroq: A novel zero shot quantization framework. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13169–13178 (2020)

    Google Scholar 

  11. Chiang, C.M., et al.: Deploying image deblurring across mobile devices: a perspective of quality and latency. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 502–503 (2020)

    Google Scholar 

  12. Conde, M.V., Timofte, R., et al.: Reversed image signal processing and RAW reconstruction. AIM 2022 Challenge Report. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2022)

    Google Scholar 

  13. Ding, X., Zhang, X., Han, J., Ding, G.: Diverse branch block: Building a convolution as an inception-like unit. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10886–10895 (2021)

    Google Scholar 

  14. Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., Sun, J.: RepVGG: making VGG-style convnets great again. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13733–13742 (2021)

    Google Scholar 

  15. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  16. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2015)

    Article  Google Scholar 

  17. Dozat, T.: Incorporating nesterov momentum into Adam (2016)

    Google Scholar 

  18. Du, Z., Liu, D., Liu, J., Tang, J., Wu, G., Fu, L.: Fast and memory-efficient network towards efficient image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 853–862 (2022)

    Google Scholar 

  19. Du, Z., Liu, J., Tang, J., Wu, G.: Anchor-based plain net for mobile image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2021)

    Google Scholar 

  20. Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE Comput. Graphics Appl. 22(2), 56–65 (2002)

    Article  Google Scholar 

  21. Gendy, G., nabil sabor, Hou, J., He, G.: Real-time channel mixing net for mobile image super-resolution. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2022)

    Google Scholar 

  22. Howard, A., et al.: Searching for mobilenetv3. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1314–1324 (2019)

    Google Scholar 

  23. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5197–5206 (2015)

    Google Scholar 

  24. Ignatov, A., Byeoung-su, K., Timofte, R.: Fast camera image denoising on mobile GPUs with deep learning, mobile AI 2021 challenge: Report. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2021)

    Google Scholar 

  25. Ignatov, A., Chiang, J., Kuo, H.K., Sycheva, A., Timofte, R.: Learned smartphone ISP on mobile NPUs with deep learning, mobile AI 2021 challenge: report. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2021)

    Google Scholar 

  26. Ignatov, A., Kobyshev, N., Timofte, R., Vanhoey, K., Van Gool, L.: DSLR-quality photos on mobile devices with deep convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3277–3285 (2017)

    Google Scholar 

  27. Ignatov, A., Kobyshev, N., Timofte, R., Vanhoey, K., Van Gool, L.: WESPE: weakly supervised photo enhancer for digital cameras. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshop, pp. 691–700 (2018)

    Google Scholar 

  28. Ignatov, A., Malivenko, G., Plowman, D., Shukla, S., Timofte, R.: Fast and accurate single-image depth estimation on mobile devices, mobile AI 2021 challenge: report. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2021)

    Google Scholar 

  29. Ignatov, A., Malivenko, G., Timofte, R.: Fast and accurate quantized camera scene detection on smartphones, mobile AI 2021 challenge: report. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2021)

    Google Scholar 

  30. Ignatov, A., et al.: PyNet-V2 mobile: efficient on-device photo processing with neural networks. In: 2021 26th International Conference on Pattern Recognition (ICPR). IEEE (2022)

    Google Scholar 

  31. Ignatov, A., Malivenko, G., Timofte, R., et al.: Efficient single-image depth estimation on mobile devices, mobile AI & aim 2022 challenge: Report. In: European Conference on Computer Vision (2022)

    Google Scholar 

  32. Ignatov, A., Patel, J., Timofte, R.: Rendering natural camera bokeh effect with deep learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 418–419 (2020)

    Google Scholar 

  33. Ignatov, A., et al.: Aim 2019 challenge on bokeh effect synthesis: Methods and results. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 3591–3598. IEEE (2019)

    Google Scholar 

  34. Ignatov, A., Romero, A., Kim, H., Timofte, R.: Real-time video super-resolution on smartphones with deep learning, mobile AI 2021 challenge: report. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2021)

    Google Scholar 

  35. Ignatov, A., et al.: MicroISP: processing 32mp photos on mobile devices with deep learning. In: European Conference on Computer Vision (2022)

    Google Scholar 

  36. Ignatov, A., Timofte, R.: Ntire 2019 challenge on image enhancement: methods and results. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  37. Ignatov, A., et al.: Power efficient video super-resolution on mobile NPUs with deep learning, mobile AI & aim 2022 challenge: report. In: European Conference on Computer Vision (2022)

    Google Scholar 

  38. Ignatov, A., et al.: AI benchmark: running deep neural networks on android smartphones. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 288–314. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_19

    Chapter  Google Scholar 

  39. Ignatov, A., Timofte, R., Denna, M., Younes, A.: Real-time quantized image super-resolution on mobile NPUs, mobile AI 2021 challenge: report. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2021)

    Google Scholar 

  40. Ignatov, A., et al.: Aim 2019 challenge on raw to RGB mapping: methods and results. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 3584–3590. IEEE (2019)

    Google Scholar 

  41. Ignatov, A., et al.: Ai benchmark: all about deep learning on smartphones in 2019. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 3617–3635. IEEE (2019)

    Google Scholar 

  42. Ignatov, A., et al.: AIM 2020 challenge on rendering realistic Bokeh. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12537, pp. 213–228. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-67070-2_13

    Chapter  Google Scholar 

  43. Ignatov, A., et al.: Pirm challenge on perceptual image enhancement on smartphones: Report. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018)

    Google Scholar 

  44. Ignatov, A., et al.: Aim 2020 challenge on learned image signal processing pipeline. arXiv preprint arXiv:2011.04994 (2020)

  45. Ignatov, A., Timofte, R., et al.: Learned smartphone ISP on mobile GPUs with deep learning, mobile AI & aim 2022 challenge: report. In: European Conference on Computer Vision (2022)

    Google Scholar 

  46. Ignatov, A., Timofte, R., et al.: Realistic bokeh effect rendering on mobile GPUs, mobile AI & aim 2022 challenge: report (2022)

    Google Scholar 

  47. Ignatov, A., Van Gool, L., Timofte, R.: Replacing mobile camera ISP with a single deep learning model. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 536–537 (2020)

    Google Scholar 

  48. Ignatov, D., Ignatov, A.: Controlling information capacity of binary neural network. Pattern Recogn. Lett. 138, 276–281 (2020)

    Article  Google Scholar 

  49. Inc., S.: https://www.synaptics.com/technology/edge-computing

  50. Irani, M., Peleg, S.: Improving resolution by image registration. CVGIP: Graph. Models Image Process. 53(3), 231–239 (1991)

    Google Scholar 

  51. Jacob, B., et al.: Quantization and training of neural networks for efficient integer-arithmetic-only inference. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2704–2713 (2018)

    Google Scholar 

  52. Jain, S.R., Gural, A., Wu, M., Dick, C.H.: Trained quantization thresholds for accurate and efficient fixed-point inference of deep neural networks. arXiv preprint arXiv:1903.08066 (2019)

  53. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)

    Google Scholar 

  54. Kinli, F.O., Mentes, S., Ozcan, B., Kirac, F., Timofte, R., et al.: Aim 2022 challenge on Instagram filter removal: methods and results. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2022)

    Google Scholar 

  55. Kong, F., et al.: Residual local feature network for efficient super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 766–776 (2022)

    Google Scholar 

  56. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25 (2012)

    Google Scholar 

  57. Li, Y., Gu, S., Gool, L.V., Timofte, R.: Learning filter basis for convolutional neural network compression. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5623–5632 (2019)

    Google Scholar 

  58. Li, Y., et al.: Ntire 2022 challenge on efficient super-resolution: methods and results. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1062–1102 (2022)

    Google Scholar 

  59. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 136–144 (2017)

    Google Scholar 

  60. Liu, Z., et al.: Metapruning: meta learning for automatic neural network channel pruning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3296–3305 (2019)

    Google Scholar 

  61. Liu, Z., Wu, B., Luo, W., Yang, X., Liu, W., Cheng, K.-T.: Bi-real net: enhancing the performance of 1-Bit CNNs with improved representational capability and advanced training algorithm. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 747–763. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_44

    Chapter  Google Scholar 

  62. Loshchilov, I., Hutter, F.: SGDR: Stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)

  63. Lugmayr, A., Danelljan, M., Timofte, R.: Ntire 2020 challenge on real-world image super-resolution: Methods and results. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 494–495 (2020)

    Google Scholar 

  64. Luo, Z., et al.: Fast nearest convolution for real-time efficient image super-resolution. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2022)

    Google Scholar 

  65. Obukhov, A., Rakhuba, M., Georgoulis, S., Kanakis, M., Dai, D., Van Gool, L.: T-basis: a compact representation for neural networks. In: International Conference on Machine Learning, pp. 7392–7404. PMLR (2020)

    Google Scholar 

  66. Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: a technical overview. IEEE Signal Process. Mag. 20(3), 21–36 (2003)

    Article  Google Scholar 

  67. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  68. Tan, M., et al.: MNASnet: platform-aware neural architecture search for mobile. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2820–2828 (2019)

    Google Scholar 

  69. TensorFlow-Lite: https://www.tensorflow.org/lite

  70. Timofte, R., Agustsson, E., Van Gool, L., Yang, M.H., Zhang, L.: Ntire 2017 challenge on single image super-resolution: methods and results. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 114–125 (2017)

    Google Scholar 

  71. Timofte, R., De Smet, V., Van Gool, L.: Anchored neighborhood regression for fast example-based super-resolution. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1920–1927 (2013)

    Google Scholar 

  72. Timofte, R., De Smet, V., Van Gool, L.: A+: adjusted anchored neighborhood regression for fast super-resolution. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 111–126. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16817-3_8

    Chapter  Google Scholar 

  73. Timofte, R., Gu, S., Wu, J., Van Gool, L.: Ntire 2018 challenge on single image super-resolution: methods and results. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 852–863 (2018)

    Google Scholar 

  74. Timofte, R., Rothe, R., Van Gool, L.: Seven ways to improve example-based single image super resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1865–1873 (2016)

    Google Scholar 

  75. Uhlich, S., et al.: Mixed precision DNNs: All you need is a good parametrization. arXiv preprint arXiv:1905.11452 (2019)

  76. Wan, A., et al.: Fbnetv2: differentiable neural architecture search for spatial and channel dimensions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12965–12974 (2020)

    Google Scholar 

  77. Wang, H., Chen, P., Zhuang, B., Shen, C.: Fully quantized image super-resolution networks. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 639–647 (2021)

    Google Scholar 

  78. Wang, Y., et al.: Towards compact single image super-resolution via contrastive self-distillation. arXiv preprint arXiv:2105.11683 (2021)

  79. Wu, B., et al.: FBNet: hardware-aware efficient convnet design via differentiable neural architecture search. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10734–10742 (2019)

    Google Scholar 

  80. Yang, C.Y., Yang, M.H.: Fast direct super-resolution by simple functions. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 561–568 (2013)

    Google Scholar 

  81. Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution as sparse representation of raw image patches. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  82. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  83. Yang, J., et al.: Quantization networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7308–7316 (2019)

    Google Scholar 

  84. Yang, R., Timofte, R., et al.: Aim 2022 challenge on super-resolution of compressed image and video: Dataset, methods and results. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2022)

    Google Scholar 

  85. Zagoruyko, S., Komodakis, N.: DiracNets: Training very deep neural networks without skip-connections. arXiv preprint arXiv:1706.00388 (2017)

  86. Zhang, K., Gu, S., Timofte, R.: Ntire 2020 challenge on perceptual extreme super-resolution: methods and results. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 492–493 (2020)

    Google Scholar 

  87. Zhuang, J., et al.: Adabelief optimizer: adapting stepsizes by the belief in observed gradients. Adv. Neural. Inf. Process. Syst. 33, 18795–18806 (2020)

    Google Scholar 

Download references

Acknowledgements

We thank the sponsors of the Mobile AI and AIM 2022 workshops and challenges: Synaptics Inc., AI Witchlabs, MediaTek, Huawei, Reality Labs, OPPO, Raspberry Pi, ETH Zürich (Computer Vision Lab) and University of Würzburg (Computer Vision Lab).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Ignatov .

Editor information

Editors and Affiliations

A Teams and Affiliations

A Teams and Affiliations

1.1 Mobile AI 2022 Team

Title:

Mobile AI 2022 Image Super-Resolution Challenge

Members:

Andrey Ignatov\(^{1,2}\) (andrey@vision.ee.ethz.ch), Radu Timofte\(^{1,2,3}\) (radu.timofte @vision.ee.ethz.ch), Maurizio Denna\(^4\) (maurizio.denna@synaptics.com), Abdel Younes\(^4\) (abdel.younes@synaptics.com)

Affiliations:

\(^1\) Computer Vision Lab, ETH Zürich, Switzerland

\(^2\) AI Witchlabs, Switzerland

\(^3\) University of Würzburg, Germany

\(^4\) Synaptics Europe, Switzerland

1.2 Z6

Title:

Skip-Concatenated Image Super Resolution Network (SCSRN) for Mobile Devices

Members:

Ganzorig Gankhuyag\(^1\) (gnzrg25@gmail.com), Jingang Huh\(^1\), Myeong Kyun Kim\(^1\), Kihwan Yoon\(^1\), Hyeon-Cheol Moon\(^1\), Seungho Lee\(^1\), Yoonsik Choe\(^2\), Jinwoo Jeong\(^1\), Sungjei Kim\(^1\)

Affiliations:

\(^1\) Korea Electronics Technology Institute (KETI), South Korea

\(^2\) Yonsei University, South Korea

1.3 TCLResearchEurope

Title:

RPQ—Extremely Efficient Super-Resolution Network Via Reparametrization, Pruning and Quantization

Members:

Maciej Smyl (maciej.smyl@gmail.com), Tomasz Latkowski, Pawel Kubik, Michal Sokolski, Yujie Ma

Affiliations:

TCL Research Europe, Poland

1.4 ECNUSR

Title:

PureConvSR: lightweight pure convolutional neural network with equivalent transformation

Members:

Jiahao Chao (51215902006@stu.ecnu.edu.cn), Zhou Zhou, Hongfan Gao, Zhengfeng Yang, Zhenbing Zeng

Affiliations:

East China Normal University, China

1.5 LCVG

Title:

HOPN: A Hardware Optimized Plain Network for Mobile Image Super-Resolution

Members:

Zhengyang Zhuge (zyoung2333@gmail.com), Chenghua Li

Affiliations:

Institute of Automation, Chinese Academy of Sciences, China

1.6 BOE-IOT-AIBD

Title:

Lightweight Quantization CNNNet for Mobile Image Super-Resolution

Members:

Dan Zhu (zhudan@boe.com.cn), Mengdi Sun, Ran Duan, Yan Gao

Affiliations:

BOE Technology Group Co., Ltd., China

1.7 NJUST

Title:

EMSRNet: An Efficient ConvNet for Real-time Image Super-resolution on Mobile Devices

Members:

Lingshun Kong (konglingshun@njust.edu.cn), Long Sun, Xiang Li, Xingdong Zhang, Jiawei Zhang, Yaqi Wu, Jinshan Pan

Affiliations:

Nanjing University of Science and Technology, China

1.8 Antins_cv

Title:

Extremely Light-Weight Dual-Branch Network for Real Time Image Super Resolution

Members:

Gaocheng Yu (yugaocheng.ygc@antgroup.com), Jin Zhang, Feng Zhang, Zhe Ma, Hongbin Wang

Affiliations:

Ant Group, China

1.9 GenMedia Group

Title:

SkipSkip Video Super-Resolution

Members:

Hojin Cho (jin@gengen.ai), Steve Kim

Affiliations:

GenGenAI, South Korea

1.10 Vccip

Title:

Diverse Branch Re-Parameterizable Net for Mobile Image Super-Resolution

Members:

Huaen Li (huaenli@mail.hfut.edu.cn), Yanbo Ma

Affiliations:

Hefei University of Technology, China

1.11 MegSR

Title:

Fast Nearest Convolution for Real-Time Image Super-Resolution [64]

Members:

Ziwei Luo (ziwei.ro@gmail.com), Youwei Li, Lei Yu, Zhihong Wen, Qi Wu, Haoqiang Fan, Shuaicheng Liu

Affiliations:

Megvii Technology, China

University of Electronic Science and Technology of China (UESTC), China

1.12 DoubleZ

Title:

Fast Image Super-Resolution Model

Members:

Lize Zhang (lzzhang_98@stu.xidian.edu.cn), Zhikai Zong

Affiliations:

Xidian University, China

Qingdao Hi-image Technologies Co., Ltd., China

1.13 Jeremy Kwon

Title:

S2R2: Salus Super-Resolution Research

Members:

Jeremy Kwon (alan.jaeger0@gmail.com)

Affiliations:

None, South Korea

1.14 Lab216

Title:

Lightweight Asymmetric Super-Resolution Network with Contrastive Quantized-aware Training

Members:

Junxi Zhang (sissie_zhang@whu.edu.cn), Mengyuan Li, Nianxiang Fu, Guanchen Ding, Han Zhu, Zhenzhong Chen

Affiliations:

Wuhan University, China

1.15 TOVB

Title:

RBPN: Repconv-based Plain Net for Mobile Image Super-Resolution

Members:

Gen Li (leegeun@yonsei.ac.kr), Yuanfan Zhang, Lei Sun

Affiliations:

None, China

1.16 Samsung Research

Title:

ABPN++: Anchor-based Plain Net for Mobile Image Super-Resolution with Pre-training

Members:

Dafeng Zhang (dfeng.zhang@samsung.com)

Affiliations:

Samsung Research, China

1.17 Rtsisr2022

Title:

Re-parameterized Anchor-based Plain Network

Members:

Neo Yang (296859095@qq.com), Fitz Liu, Jerry Zhao

Affiliations:

None, China

1.18 Aselsan Research

Title:

XCAT - Lightweight Single Image Super Resolution Network with Cross Concatenated Heterogeneous Group Convolutions [7]

Members:

Mustafa Ayazoglu (mayazoglu@aselsan.com.tr), Bahri Batuhan Bilecen

Affiliations:

Aselsan Corporation, Turkey

1.19 Klab_SR

Title:

Deeper and narrower SR Model

Members:

Shota Hirose (syouta.hrs@akane.waseda.jp), Kasidis Arunruangsirilert, Luo Ao

Affiliations:

Waseda University, Japan

1.20 TCL Research HK

Title:

Anchor-collapsed Super Resolution for Mobile Devices

Members:

Ho Chun Leung (hcleung@tcl.com), Andrew Wei, Jie Liu, Qiang Liu, Dahai Yu

Affiliations:

TCL Corporate Research, China

1.21 RepGSR

Title:

Super Lightweight Super-resolution Based on Ghost Features with Re-parameterization

Members:

Ao Li (liao@cqu.edu.cn), Lei Luo, Ce Zhu

Affiliations:

University of Electronic Science and Technology, China

1.22 ICL

Title:

Neural Network Quantization With Reparametrization And Kernel Range Regularization

Members:

Seongmin Hong (smhongok@snu.ac.kr), Dongwon Park, Joonhee Lee, Byeong Hyun Lee, Seunggyu Lee, Se Young Chun

Affiliations:

Intelligent Computational Imaging Lab, Seoul National University, South Korea

1.23 Just A try

Title:

Plain net for realtime Super-resolution

Members:

Ruiyuan He (164643209@qq.com), Xuhao Jiang

Affiliations:

None, China

1.24 Bilibili AI

Title:

A Robust Anchor-based network for Mobile Super-Resolution

Members:

Haihang Ruan (hhruan@mail.sim.ac.cn), Xinjian Zhang, Jing Liu

Affiliations:

Bilibili Inc., China

1.25 MobileSR

Title:

Real-Time Channel Mixing Net for Mobile Image Super-Resolution [21]

Members:

Garas Gendy\(^1\) (garasgaras@yahoo.com), Nabil Sabor\(^2\), Jingchao Hou\(^1\), Guanghui He\(^1\)

Affiliations:

\(^1\) Shanghai Jiao Tong University, China

\(^2\) Assiut University, Egypt

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ignatov, A. et al. (2023). Efficient and Accurate Quantized Image Super-Resolution on Mobile NPUs, Mobile AI & AIM 2022 Challenge: Report. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13803. Springer, Cham. https://doi.org/10.1007/978-3-031-25066-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25066-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25065-1

  • Online ISBN: 978-3-031-25066-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics