Abstract
This paper reviews the Challenge on Super-Resolution of Compressed Image and Video at AIM 2022. This challenge includes two tracks. Track 1 aims at the super-resolution of compressed image, and Track 2 targets the super-resolution of compressed video. In Track 1, we use the popular dataset DIV2K as the training, validation and test sets. In Track 2, we propose the LDV 3.0 dataset, which contains 365 videos, including the LDV 2.0 dataset (335 videos) and 30 additional videos. In this challenge, there are 12 teams and 2 teams that submitted the final results to Track 1 and Track 2, respectively. The proposed methods and solutions gauge the state-of-the-art of super-resolution on compressed image and video. The proposed LDV 3.0 dataset is available at https://github.com/RenYang-home/LDV_dataset. The homepage of this challenge is at https://github.com/RenYang-home/AIM22_CompressSR.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 126–135 (2017)
Ayazoğlu, M.: IMDeception: grouped information distilling super-resolution network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 756–765 (2022)
Bhat, G., Danelljan, M., Timofte, R.: NTIRE 2021 challenge on burst super-resolution: methods and results. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 613–626 (2021)
Bilecen, B.B., Fişne, A., Ayazoğlu, M.: Efficient multi-purpose cross-attention based image alignment block for edge devices. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 3639–3648 (2022)
Boytsov, L., Naidan, B.: Engineering efficient and effective non-metric space library. In: Brisaboa, N., Pedreira, O., Zezula, P. (eds.) SISAP 2013. LNCS, vol. 8199, pp. 280–293. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41062-8_28
Briechle, K., Hanebeck, U.D.: Template matching using fast normalized cross correlation. In: Optical Pattern Recognition XII, vol. 4387, pp. 95–102. International Society for Optics and Photonics (2001)
Bychkovsky, V., Paris, S., Chan, E., Durand, F.: Learning photographic global tonal adjustment with a database of input/output image pairs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2011)
Caballero, J., et al.: Real-time video super-resolution with spatio-temporal networks and motion compensation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4778–4787 (2017)
Chan, K.C., Wang, X., Yu, K., Dong, C., Loy, C.C.: BasicVSR: the search for essential components in video super-resolution and beyond. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)
Chan, K.C., Zhou, S., Xu, X., Loy, C.C.: BasicVSR++: improving video super-resolution with enhanced propagation and alignment. arXiv preprint arXiv:2104.13371 (2021)
Chen, P., Yang, W., Wang, M., Sun, L., Hu, K., Wang, S.: Compressed domain deep video super-resolution. IEEE Trans. Image Process. 30, 7156–7169 (2021)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning (ICML), pp. 1597–1607. PMLR (2020)
Chen, X., Wang, X., Zhou, J., Dong, C.: Activating more pixels in image super-resolution transformer. arXiv preprint arXiv:2205.04437 (2022)
Chi, L., Jiang, B., Mu, Y.: Fast Fourier convolution. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 33, pp. 4479–4488 (2020)
Chu, X., Chen, L., Chen, C., Lu, X.: Improving image restoration by revisiting global information aggregation. arXiv preprint arXiv:2112.04491 (2021)
Chu, X., Chen, L., Yu, W.: NAFSSR: stereo image super-resolution using NAFNet. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1239–1248 (2022)
Conde, M.V., Choi, U.J., Burchi, M., Timofte, R.: Swin2SR: SwinV2 transformer for compressed image super-resolution and restoration. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2022)
Conde, M.V., Timofte, R., et al.: Reversed image signal processing and RAW reconstruction. AIM 2022 challenge report. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2022)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 248–255 (2009)
Deng, J., Wang, L., Pu, S., Zhuo, C.: Spatio-temporal deformable convolution for compressed video quality enhancement. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07, pp. 10696–10703 (2020)
Deng, X., Yang, R., Xu, M., Dragotti, P.L.: Wavelet domain style transfer for an effective perception-distortion tradeoff in single image super-resolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3076–3085 (2019)
Dong, C., Deng, Y., Loy, C.C., Tang, X.: Compression artifacts reduction by a deep convolutional network. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 576–584 (2015)
Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13
Du, Z., Liu, D., Liu, J., Tang, J., Wu, G., Fu, L.: Fast and memory-efficient network towards efficient image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 853–862 (2022)
Ehrlich, M., Davis, L., Lim, S.-N., Shrivastava, A.: Quantization guided JPEG artifact correction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 293–309. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_18
Elfwing, S., Uchibe, E., Doya, K.: Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Netw. 107, 3–11 (2018)
Google: YouTube. https://www.youtube.com
Gu, J., Lu, H., Zuo, W., Dong, C.: Blind super-resolution with iterative kernel correction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1604–1613 (2019)
Gu, S., Lugmayr, A., Danelljan, M., Fritsche, M., Lamour, J., Timofte, R.: DIV8K: DIVerse 8K resolution image dataset. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 3512–3516 (2019)
Guan, Z., Xing, Q., Xu, M., Yang, R., Liu, T., Wang, Z.: MFQE 2.0: a new approach for multi-frame quality enhancement on compressed video. IEEE Trans. Pattern Anal. Mach. Intell. 43(3), 949–963 (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)
Ignatov, A., Timofte, R., Denna, M., Younes, A., et al.: Efficient and accurate quantized image super-resolution on mobile NPUs, mobile AI & AIM 2022 challenge: report. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2022)
Ignatov, A., Timofte, R., Kuo, H.K., Lee, M., Xu, Y.S., et al.: Real-time video super-resolution on mobile NPUs with deep learning, mobile AI & AIM 2022 challenge: report. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2022)
Ignatov, A., Timofte, R., et al.: Efficient bokeh effect rendering on mobile GPUs with deep learning, mobile AI & AIM 2022 challenge: report. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2022)
Ignatov, A., Timofte, R., et al.: Efficient single-image depth estimation on mobile devices, mobile AI & AIM challenge: report. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2022)
Ignatov, A., Timofte, R., et al.: Learned smartphone ISP on mobile GPUs with deep learning, mobile AI & AIM 2022 challenge: report. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2022)
Isobe, T., Jia, X., Gu, S., Li, S., Wang, S., Tian, Q.: Video super-resolution with recurrent structure-detail network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 645–660. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_38
Jiang, J., Zhang, K., Timofte, R.: Towards flexible blind JPEG artifacts removal. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4997–5006 (2021)
Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1646–1654 (2016)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the International Conference on Learning Representations (ICLR) (2015)
Kınlı, F.O., Menteş, S., Özcan, B., Kirac, F., Timofte, R., et al.: AIM 2022 challenge on Instagram filter removal: methods and results. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2022)
Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Fast and accurate image super-resolution with deep Laplacian pyramid networks. IEEE Trans. Pattern Anal. Mach. Intell. 41(11), 2599–2613 (2018)
Li, B., Li, X., Lu, Y., Liu, S., Feng, R., Chen, Z.: HST: hierarchical swin transformer for compressed image super-resolution. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2022)
Li, L., Tang, J., Chen, M., Zhao, S., Li, J., Zhang, L.: Multi-patch learning: looking more pixels in the training phase. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2022)
Li, X., Sun, S., Zhang, Z., Chen, Z.: Multi-scale grouped dense network for VVC intra coding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 158–159 (2020)
Liang, J., et al.: VRT: a video restoration transformer. arXiv preprint arXiv:2201.12288 (2022)
Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: SwinIR: image restoration using swin transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1833–1844 (2021)
Lin, Z., et al.: Revisiting RCAN: improved training for image super-resolution. arXiv preprint arXiv:2201.11279 (2022)
Liu, H., et al.: Video super-resolution based on deep learning: a comprehensive survey. Artif. Intell. Rev. 55, 5981–6035 (2022). https://doi.org/10.1007/s10462-022-10147-y
Liu, Z., et al.: Swin transformer V2: scaling up capacity and resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12009–12019 (2022)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10012–10022 (2021)
Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)
Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. CoRR abs/1603.09320 (2016). http://arxiv.org/abs/1603.09320
Pang, Y., et al.: FAN: frequency aggregation network for real image super-resolution. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12537, pp. 468–483. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-67070-2_28
Papyan, V., Elad, M.: Multi-scale patch-based image restoration. IEEE Trans. Image Process. 25(1), 249–261 (2015)
Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2337–2346 (2019)
Qin, X., Zhu, Y., Li, C., Wang, P., Cheng, J.: CIDBNet: a consecutively-interactive dual-branch network for JPEG compressed image super-resolution. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2022)
Rota, C., Buzzelli, M., Bianco, S., Schettini, R.: Video restoration based on deep learning: a comprehensive survey. Artif. Intell. Rev. (2022). https://doi.org/10.1007/s10462-022-10302-5
Sajjadi, M.S., Scholkopf, B., Hirsch, M.: EnhanceNet: single image super-resolution through automated texture synthesis. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 4491–4500 (2017)
Tai, Y., Yang, J., Liu, X., Xu, C.: MemNet: a persistent memory network for image restoration. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 4539–4547 (2017)
Tao, X., Gao, H., Liao, R., Wang, J., Jia, J.: Detail-revealing deep video super-resolution. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 4472–4480 (2017)
Timofte, R., Agustsson, E., Van Gool, L., Yang, M.H., Zhang, L.: NTIRE 2017 challenge on single image super-resolution: methods and results. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 114–125 (2017)
Timofte, R., Rothe, R., Van Gool, L.: Seven ways to improve example-based single image super resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1865–1873 (2016)
Wang, X., Chan, K.C., Yu, K., Dong, C., Change Loy, C.: EDVR: video restoration with enhanced deformable convolutional networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2019)
Wang, X., Yu, K., Dong, C., Loy, C.C.: Recovering realistic texture in image super-resolution by deep spatial feature transform. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 606–615 (2018)
Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Proceedings of the European Conference on Computer Vision Workshops (ECCVW) (2018)
Xu, Y., Gao, L., Tian, K., Zhou, S., Sun, H.: Non-local ConvLSTM for video compression artifact reduction. In: Proceedings of The IEEE International Conference on Computer Vision (ICCV), October 2019
Yamac, M., Ataman, B., Nawaz, A.: KernelNet: a blind super-resolution kernel estimation network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 453–462 (2021)
Yang, R., Mentzer, F., Gool, L.V., Timofte, R.: Learning for video compression with hierarchical quality and recurrent enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6628–6637 (2020)
Yang, R., Sun, X., Xu, M., Zeng, W.: Quality-gated convolutional LSTM for enhancing compressed video. In: Proceedings of the IEEE International Conference on Multimedia and Expo (ICME), pp. 532–537. IEEE (2019)
Yang, R., Timofte, R., et al.: NTIRE 2021 challenge on quality enhancement of compressed video: dataset and study. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2021)
Yang, R., Timofte, R., et al.: NTIRE 2021 challenge on quality enhancement of compressed video: methods and results. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2021)
Yang, R., Timofte, R., et al.: AIM 2022 challenge on super-resolution of compressed image and video: dataset, methods and results. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2022)
Yang, R., Timofte, R., et al.: NTIRE 2022 challenge on super-resolution and quality enhancement of compressed video: dataset, methods and results. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2022)
Yang, R., Xu, M., Liu, T., Wang, Z., Guan, Z.: Enhancing quality for HEVC compressed videos. IEEE Trans. Circ. Syst. Video Technol. 29(7), 2039–2054 (2018)
Yang, R., Xu, M., Wang, Z.: Decoder-side HEVC quality enhancement with scalable convolutional neural network. In: Proceedings of the IEEE International Conference on Multimedia and Expo (ICME), pp. 817–822. IEEE (2017)
Yang, R., Xu, M., Wang, Z., Li, T.: Multi-frame quality enhancement for compressed video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6664–6673 (2018)
Yoo, J., Ahn, N., Sohn, K.A.: Rethinking data augmentation for image super-resolution: a comprehensive analysis and a new strategy. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8375–8384 (2020)
Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: Restormer: efficient transformer for high-resolution image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5728–5739 (2022)
Zhang, K., Liang, J., Van Gool, L., Timofte, R.: Designing a practical degradation model for deep blind image super-resolution. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 4791–4800 (2021)
Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)
Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_18
Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2472–2481 (2018)
Zheng, M., et al.: Progressive training of a two-stage framework for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 1024–1031 (2022)
Acknowledgments
We thank the sponsors of the AIM and Mobile AI 2022 workshops and challenges: AI Witchlabs, MediaTek, Huawei, Reality Labs, OPPO, Synaptics, Raspberry Pi, ETH Zürich (Computer Vision Lab) and University of Würzburg (Computer Vision Lab).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix: Teams and Affiliations
Appendix: Teams and Affiliations
1.1 AIM 2022 Team
Challenge:
AIM 2022 Challenge on Super-Resolution of Compressed Image and Video
Organizer(s):
Ren Yang\(^{1}\) (ren.yang@vision.ee.ethz.ch),
Radu Timofte\(^{1,2}\) (radu.timofte@uni-wuerzburg.ch)
Affiliation(s):
\(^1\) Computer Vision Lab, ETH Zürich, Switzerland
\(^2\) Julius Maximilian University of Würzburg, Germany
1.2 VUE Team
Member(s):
Xin Li\(^{1}\) (lixin41@baidu.com), Qi Zhang\(^{1}\), Lin Zhang\(^{2}\), Fanglong Liu\(^{1}\), Dongliang He\(^{1}\), Fu li\(^{1}\), He Zheng\(^{1}\), Weihang Yuan\(^{1}\)
Affiliation(s):
\(^\text {1 } \) Department of Computer Vision Technology (VIS), Baidu Inc.
\(^\text {2 } \) Institute of Automation, Chinese Academy of Sciences
1.3 NoahTerminalCV Team
Member(s):
Pavel Ostyakov (ostyakov.pavel@huawei.com), Dmitry Vyal, Magauiya Zhussip, Xueyi Zou, Youliang Yan
Affiliation(s):
Noah’s Ark Lab, Huawei
1.4 BSR Team
Member(s):
Lei Li (lilei.leili@bytedance.com), Jingzhu Tang, Ming Chen, Shijie Zhao
Affiliation(s):
Multimedia Lab, ByteDance Inc.
1.5 CASIA LCVG Team
Member(s):
Yu Zhu\(^{1}\) (zhuyu.cv@gmail.com), Xiaoran Qin\(^{1}\), Chenghua Li\(^{1}\), Cong Leng\(^{1,2,3}\), Jian Cheng\(^{1,2,3}\)
Affiliation(s):
\(^1\) Institute of Automation, Chinese Academy of Sciences, Beijing, China
\(^2\) MAICRO, Nanjing, China
\(^3\) AiRiA, Nanjing, China
1.6 IVL Team
Member(s):
Claudio Rota (c.rota30@campus.unimib.it), Marco Buzzelli, Simone Bianco, Raimondo Schettini
Affiliation(s):
University of Milano - Bicocca, Italy
1.7 Samsung Research China - Beijing (SRC-B)
Member(s):
Dafeng Zhang (dfeng.zhang@samsung.com), Feiyu Huang, Shizhuo Liu, Xiaobing Wang, Zhezhu Jin
Affiliation(s):
Samsung Research China - Beijing (SRC-B), China
1.8 USTC-IR
Member(s):
Bingchen Li (lbc31415926@mail.ustc.edu.cn), Xin Li
Affiliation(s):
University of Science and Technology of China, Hefei, China
1.9 MSDRSR
Member(s):
Mingxi Li (li_mx_0318@163.com), Ding Liu\(^{1}\)
Affiliation(s):
\(^{1}\) ByteDance Inc.
1.10 Giantpandacv Team
Member(s):
Wenbin Zou\(^{1,4}\) (alexzou14@foxmail.com), Peijie Dong\(^{2}\), Tian Ye\(^{3}\), Yunchen Zhang\(^{5}\), Ming Tan\(^{4}\), Xin Niu\(^{2}\)
Affiliation(s):
\(^1\) South China University of Technology, Guangzhou, China
\(^2\) National University of Defense Technology, Changsha, China
\(^3\) Jimei University, Xiamen, China
\(^4\) Fujian Normal University, Fuzhou, China
\(^5\) China Design Group Inc., Nanjing, China
1.11 Aselsan Research Team
Member(s):
Mustafa Ayazoğlu (mayazoglu@aselsan.com.tr)
Affiliation(s):
Aselsan (www.aselsan.com.tr), Ankara, Turkey
1.12 SRMUI Team
Member(s):
Marcos V. Conde\(^1\) (marcos.conde-osorio@uni-wuerzburg.de), Ui-Jin Choi\(^2\), Radu Timofte\(^1\)
Affiliation(s):
\(^1\) Computer Vision Lab, Julius Maximilian University of Würzburg, Germany
\(^2\) MegaStudyEdu, South Korea
1.13 MVideo Team
Member(s):
Zhuang Jia (jiazhuang@xiaomi.com), Tianyu Xu, Yijian Zhang
Affiliation(s):
Xiaomi Inc.
1.14 UESTC+XJU CV Team
Member(s):
Mao Ye (cvlab.uestc@gmail.com), Dengyan Luo, Xiaofeng Pan
Affiliation(s):
University of Electronic Science and Technology of China, Chengdu, China
1.15 cvlab Team
Member(s):
Liuhan Peng\(^1\) (pengliuhan@gmail.com), Mao Ye\(^2\)
Affiliation(s):
\(^1\) Xinjiang University, Xinjiang, China
\(^2\) University of Electronic Science and Technology of China, Chengdu, China
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yang, R. et al. (2023). AIM 2022 Challenge on Super-Resolution of Compressed Image and Video: Dataset, Methods and Results. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13803. Springer, Cham. https://doi.org/10.1007/978-3-031-25066-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-25066-8_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25065-1
Online ISBN: 978-3-031-25066-8
eBook Packages: Computer ScienceComputer Science (R0)