Skip to main content

AIM 2022 Challenge on Super-Resolution of Compressed Image and Video: Dataset, Methods and Results

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13803))

Included in the following conference series:

Abstract

This paper reviews the Challenge on Super-Resolution of Compressed Image and Video at AIM 2022. This challenge includes two tracks. Track 1 aims at the super-resolution of compressed image, and Track 2 targets the super-resolution of compressed video. In Track 1, we use the popular dataset DIV2K as the training, validation and test sets. In Track 2, we propose the LDV 3.0 dataset, which contains 365 videos, including the LDV 2.0 dataset (335 videos) and 30 additional videos. In this challenge, there are 12 teams and 2 teams that submitted the final results to Track 1 and Track 2, respectively. The proposed methods and solutions gauge the state-of-the-art of super-resolution on compressed image and video. The proposed LDV 3.0 dataset is available at https://github.com/RenYang-home/LDV_dataset. The homepage of this challenge is at https://github.com/RenYang-home/AIM22_CompressSR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://support.google.com/youtube/answer/2797468?hl=en.

  2. 2.

    https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.20.

References

  1. Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 126–135 (2017)

    Google Scholar 

  2. Ayazoğlu, M.: IMDeception: grouped information distilling super-resolution network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 756–765 (2022)

    Google Scholar 

  3. Bhat, G., Danelljan, M., Timofte, R.: NTIRE 2021 challenge on burst super-resolution: methods and results. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 613–626 (2021)

    Google Scholar 

  4. Bilecen, B.B., Fişne, A., Ayazoğlu, M.: Efficient multi-purpose cross-attention based image alignment block for edge devices. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 3639–3648 (2022)

    Google Scholar 

  5. Boytsov, L., Naidan, B.: Engineering efficient and effective non-metric space library. In: Brisaboa, N., Pedreira, O., Zezula, P. (eds.) SISAP 2013. LNCS, vol. 8199, pp. 280–293. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41062-8_28

    Chapter  Google Scholar 

  6. Briechle, K., Hanebeck, U.D.: Template matching using fast normalized cross correlation. In: Optical Pattern Recognition XII, vol. 4387, pp. 95–102. International Society for Optics and Photonics (2001)

    Google Scholar 

  7. Bychkovsky, V., Paris, S., Chan, E., Durand, F.: Learning photographic global tonal adjustment with a database of input/output image pairs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2011)

    Google Scholar 

  8. Caballero, J., et al.: Real-time video super-resolution with spatio-temporal networks and motion compensation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4778–4787 (2017)

    Google Scholar 

  9. Chan, K.C., Wang, X., Yu, K., Dong, C., Loy, C.C.: BasicVSR: the search for essential components in video super-resolution and beyond. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  10. Chan, K.C., Zhou, S., Xu, X., Loy, C.C.: BasicVSR++: improving video super-resolution with enhanced propagation and alignment. arXiv preprint arXiv:2104.13371 (2021)

  11. Chen, P., Yang, W., Wang, M., Sun, L., Hu, K., Wang, S.: Compressed domain deep video super-resolution. IEEE Trans. Image Process. 30, 7156–7169 (2021)

    Article  Google Scholar 

  12. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning (ICML), pp. 1597–1607. PMLR (2020)

    Google Scholar 

  13. Chen, X., Wang, X., Zhou, J., Dong, C.: Activating more pixels in image super-resolution transformer. arXiv preprint arXiv:2205.04437 (2022)

  14. Chi, L., Jiang, B., Mu, Y.: Fast Fourier convolution. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 33, pp. 4479–4488 (2020)

    Google Scholar 

  15. Chu, X., Chen, L., Chen, C., Lu, X.: Improving image restoration by revisiting global information aggregation. arXiv preprint arXiv:2112.04491 (2021)

  16. Chu, X., Chen, L., Yu, W.: NAFSSR: stereo image super-resolution using NAFNet. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1239–1248 (2022)

    Google Scholar 

  17. Conde, M.V., Choi, U.J., Burchi, M., Timofte, R.: Swin2SR: SwinV2 transformer for compressed image super-resolution and restoration. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2022)

    Google Scholar 

  18. Conde, M.V., Timofte, R., et al.: Reversed image signal processing and RAW reconstruction. AIM 2022 challenge report. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2022)

    Google Scholar 

  19. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 248–255 (2009)

    Google Scholar 

  20. Deng, J., Wang, L., Pu, S., Zhuo, C.: Spatio-temporal deformable convolution for compressed video quality enhancement. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07, pp. 10696–10703 (2020)

    Google Scholar 

  21. Deng, X., Yang, R., Xu, M., Dragotti, P.L.: Wavelet domain style transfer for an effective perception-distortion tradeoff in single image super-resolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3076–3085 (2019)

    Google Scholar 

  22. Dong, C., Deng, Y., Loy, C.C., Tang, X.: Compression artifacts reduction by a deep convolutional network. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 576–584 (2015)

    Google Scholar 

  23. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  24. Du, Z., Liu, D., Liu, J., Tang, J., Wu, G., Fu, L.: Fast and memory-efficient network towards efficient image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 853–862 (2022)

    Google Scholar 

  25. Ehrlich, M., Davis, L., Lim, S.-N., Shrivastava, A.: Quantization guided JPEG artifact correction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 293–309. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_18

    Chapter  Google Scholar 

  26. Elfwing, S., Uchibe, E., Doya, K.: Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Netw. 107, 3–11 (2018)

    Article  Google Scholar 

  27. Google: YouTube. https://www.youtube.com

  28. Gu, J., Lu, H., Zuo, W., Dong, C.: Blind super-resolution with iterative kernel correction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1604–1613 (2019)

    Google Scholar 

  29. Gu, S., Lugmayr, A., Danelljan, M., Fritsche, M., Lamour, J., Timofte, R.: DIV8K: DIVerse 8K resolution image dataset. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 3512–3516 (2019)

    Google Scholar 

  30. Guan, Z., Xing, Q., Xu, M., Yang, R., Liu, T., Wang, Z.: MFQE 2.0: a new approach for multi-frame quality enhancement on compressed video. IEEE Trans. Pattern Anal. Mach. Intell. 43(3), 949–963 (2019)

    Article  Google Scholar 

  31. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  32. Ignatov, A., Timofte, R., Denna, M., Younes, A., et al.: Efficient and accurate quantized image super-resolution on mobile NPUs, mobile AI & AIM 2022 challenge: report. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2022)

    Google Scholar 

  33. Ignatov, A., Timofte, R., Kuo, H.K., Lee, M., Xu, Y.S., et al.: Real-time video super-resolution on mobile NPUs with deep learning, mobile AI & AIM 2022 challenge: report. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2022)

    Google Scholar 

  34. Ignatov, A., Timofte, R., et al.: Efficient bokeh effect rendering on mobile GPUs with deep learning, mobile AI & AIM 2022 challenge: report. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2022)

    Google Scholar 

  35. Ignatov, A., Timofte, R., et al.: Efficient single-image depth estimation on mobile devices, mobile AI & AIM challenge: report. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2022)

    Google Scholar 

  36. Ignatov, A., Timofte, R., et al.: Learned smartphone ISP on mobile GPUs with deep learning, mobile AI & AIM 2022 challenge: report. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2022)

    Google Scholar 

  37. Isobe, T., Jia, X., Gu, S., Li, S., Wang, S., Tian, Q.: Video super-resolution with recurrent structure-detail network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 645–660. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_38

    Chapter  Google Scholar 

  38. Jiang, J., Zhang, K., Timofte, R.: Towards flexible blind JPEG artifacts removal. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4997–5006 (2021)

    Google Scholar 

  39. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1646–1654 (2016)

    Google Scholar 

  40. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  41. Kınlı, F.O., Menteş, S., Özcan, B., Kirac, F., Timofte, R., et al.: AIM 2022 challenge on Instagram filter removal: methods and results. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2022)

    Google Scholar 

  42. Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Fast and accurate image super-resolution with deep Laplacian pyramid networks. IEEE Trans. Pattern Anal. Mach. Intell. 41(11), 2599–2613 (2018)

    Article  Google Scholar 

  43. Li, B., Li, X., Lu, Y., Liu, S., Feng, R., Chen, Z.: HST: hierarchical swin transformer for compressed image super-resolution. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2022)

    Google Scholar 

  44. Li, L., Tang, J., Chen, M., Zhao, S., Li, J., Zhang, L.: Multi-patch learning: looking more pixels in the training phase. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2022)

    Google Scholar 

  45. Li, X., Sun, S., Zhang, Z., Chen, Z.: Multi-scale grouped dense network for VVC intra coding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 158–159 (2020)

    Google Scholar 

  46. Liang, J., et al.: VRT: a video restoration transformer. arXiv preprint arXiv:2201.12288 (2022)

  47. Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: SwinIR: image restoration using swin transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1833–1844 (2021)

    Google Scholar 

  48. Lin, Z., et al.: Revisiting RCAN: improved training for image super-resolution. arXiv preprint arXiv:2201.11279 (2022)

  49. Liu, H., et al.: Video super-resolution based on deep learning: a comprehensive survey. Artif. Intell. Rev. 55, 5981–6035 (2022). https://doi.org/10.1007/s10462-022-10147-y

    Article  Google Scholar 

  50. Liu, Z., et al.: Swin transformer V2: scaling up capacity and resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12009–12019 (2022)

    Google Scholar 

  51. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10012–10022 (2021)

    Google Scholar 

  52. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)

  53. Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. CoRR abs/1603.09320 (2016). http://arxiv.org/abs/1603.09320

  54. Pang, Y., et al.: FAN: frequency aggregation network for real image super-resolution. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12537, pp. 468–483. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-67070-2_28

    Chapter  Google Scholar 

  55. Papyan, V., Elad, M.: Multi-scale patch-based image restoration. IEEE Trans. Image Process. 25(1), 249–261 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  56. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2337–2346 (2019)

    Google Scholar 

  57. Qin, X., Zhu, Y., Li, C., Wang, P., Cheng, J.: CIDBNet: a consecutively-interactive dual-branch network for JPEG compressed image super-resolution. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2022)

    Google Scholar 

  58. Rota, C., Buzzelli, M., Bianco, S., Schettini, R.: Video restoration based on deep learning: a comprehensive survey. Artif. Intell. Rev. (2022). https://doi.org/10.1007/s10462-022-10302-5

  59. Sajjadi, M.S., Scholkopf, B., Hirsch, M.: EnhanceNet: single image super-resolution through automated texture synthesis. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 4491–4500 (2017)

    Google Scholar 

  60. Tai, Y., Yang, J., Liu, X., Xu, C.: MemNet: a persistent memory network for image restoration. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 4539–4547 (2017)

    Google Scholar 

  61. Tao, X., Gao, H., Liao, R., Wang, J., Jia, J.: Detail-revealing deep video super-resolution. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 4472–4480 (2017)

    Google Scholar 

  62. Timofte, R., Agustsson, E., Van Gool, L., Yang, M.H., Zhang, L.: NTIRE 2017 challenge on single image super-resolution: methods and results. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 114–125 (2017)

    Google Scholar 

  63. Timofte, R., Rothe, R., Van Gool, L.: Seven ways to improve example-based single image super resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1865–1873 (2016)

    Google Scholar 

  64. Wang, X., Chan, K.C., Yu, K., Dong, C., Change Loy, C.: EDVR: video restoration with enhanced deformable convolutional networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2019)

    Google Scholar 

  65. Wang, X., Yu, K., Dong, C., Loy, C.C.: Recovering realistic texture in image super-resolution by deep spatial feature transform. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 606–615 (2018)

    Google Scholar 

  66. Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Proceedings of the European Conference on Computer Vision Workshops (ECCVW) (2018)

    Google Scholar 

  67. Xu, Y., Gao, L., Tian, K., Zhou, S., Sun, H.: Non-local ConvLSTM for video compression artifact reduction. In: Proceedings of The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  68. Yamac, M., Ataman, B., Nawaz, A.: KernelNet: a blind super-resolution kernel estimation network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 453–462 (2021)

    Google Scholar 

  69. Yang, R., Mentzer, F., Gool, L.V., Timofte, R.: Learning for video compression with hierarchical quality and recurrent enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6628–6637 (2020)

    Google Scholar 

  70. Yang, R., Sun, X., Xu, M., Zeng, W.: Quality-gated convolutional LSTM for enhancing compressed video. In: Proceedings of the IEEE International Conference on Multimedia and Expo (ICME), pp. 532–537. IEEE (2019)

    Google Scholar 

  71. Yang, R., Timofte, R., et al.: NTIRE 2021 challenge on quality enhancement of compressed video: dataset and study. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2021)

    Google Scholar 

  72. Yang, R., Timofte, R., et al.: NTIRE 2021 challenge on quality enhancement of compressed video: methods and results. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2021)

    Google Scholar 

  73. Yang, R., Timofte, R., et al.: AIM 2022 challenge on super-resolution of compressed image and video: dataset, methods and results. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2022)

    Google Scholar 

  74. Yang, R., Timofte, R., et al.: NTIRE 2022 challenge on super-resolution and quality enhancement of compressed video: dataset, methods and results. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2022)

    Google Scholar 

  75. Yang, R., Xu, M., Liu, T., Wang, Z., Guan, Z.: Enhancing quality for HEVC compressed videos. IEEE Trans. Circ. Syst. Video Technol. 29(7), 2039–2054 (2018)

    Article  Google Scholar 

  76. Yang, R., Xu, M., Wang, Z.: Decoder-side HEVC quality enhancement with scalable convolutional neural network. In: Proceedings of the IEEE International Conference on Multimedia and Expo (ICME), pp. 817–822. IEEE (2017)

    Google Scholar 

  77. Yang, R., Xu, M., Wang, Z., Li, T.: Multi-frame quality enhancement for compressed video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6664–6673 (2018)

    Google Scholar 

  78. Yoo, J., Ahn, N., Sohn, K.A.: Rethinking data augmentation for image super-resolution: a comprehensive analysis and a new strategy. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8375–8384 (2020)

    Google Scholar 

  79. Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: Restormer: efficient transformer for high-resolution image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5728–5739 (2022)

    Google Scholar 

  80. Zhang, K., Liang, J., Van Gool, L., Timofte, R.: Designing a practical degradation model for deep blind image super-resolution. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 4791–4800 (2021)

    Google Scholar 

  81. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  82. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_18

    Chapter  Google Scholar 

  83. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2472–2481 (2018)

    Google Scholar 

  84. Zheng, M., et al.: Progressive training of a two-stage framework for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 1024–1031 (2022)

    Google Scholar 

Download references

Acknowledgments

We thank the sponsors of the AIM and Mobile AI 2022 workshops and challenges: AI Witchlabs, MediaTek, Huawei, Reality Labs, OPPO, Synaptics, Raspberry Pi, ETH Zürich (Computer Vision Lab) and University of Würzburg (Computer Vision Lab).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren Yang .

Editor information

Editors and Affiliations

Appendix: Teams and Affiliations

Appendix: Teams and Affiliations

1.1 AIM 2022 Team

Challenge:

AIM 2022 Challenge on Super-Resolution of Compressed Image and Video

Organizer(s):

Ren Yang\(^{1}\) (ren.yang@vision.ee.ethz.ch),

Radu Timofte\(^{1,2}\) (radu.timofte@uni-wuerzburg.ch)

Affiliation(s):

\(^1\) Computer Vision Lab, ETH Zürich, Switzerland

\(^2\) Julius Maximilian University of Würzburg, Germany

1.2 VUE Team

Member(s):

Xin Li\(^{1}\) (lixin41@baidu.com), Qi Zhang\(^{1}\), Lin Zhang\(^{2}\), Fanglong Liu\(^{1}\), Dongliang He\(^{1}\), Fu li\(^{1}\), He Zheng\(^{1}\), Weihang Yuan\(^{1}\)

Affiliation(s):

\(^\text {1 } \) Department of Computer Vision Technology (VIS), Baidu Inc.

\(^\text {2 } \) Institute of Automation, Chinese Academy of Sciences

1.3 NoahTerminalCV Team

Member(s):

Pavel Ostyakov (ostyakov.pavel@huawei.com), Dmitry Vyal, Magauiya Zhussip, Xueyi Zou, Youliang Yan

Affiliation(s):

Noah’s Ark Lab, Huawei

1.4 BSR Team

Member(s):

Lei Li (lilei.leili@bytedance.com), Jingzhu Tang, Ming Chen, Shijie Zhao

Affiliation(s):

Multimedia Lab, ByteDance Inc.

1.5 CASIA LCVG Team

Member(s):

Yu Zhu\(^{1}\) (zhuyu.cv@gmail.com), Xiaoran Qin\(^{1}\), Chenghua Li\(^{1}\), Cong Leng\(^{1,2,3}\), Jian Cheng\(^{1,2,3}\)

Affiliation(s):

\(^1\) Institute of Automation, Chinese Academy of Sciences, Beijing, China

\(^2\) MAICRO, Nanjing, China

\(^3\) AiRiA, Nanjing, China

1.6 IVL Team

Member(s):

Claudio Rota (c.rota30@campus.unimib.it), Marco Buzzelli, Simone Bianco, Raimondo Schettini

Affiliation(s):

University of Milano - Bicocca, Italy

1.7 Samsung Research China - Beijing (SRC-B)

Member(s):

Dafeng Zhang (dfeng.zhang@samsung.com), Feiyu Huang, Shizhuo Liu, Xiaobing Wang, Zhezhu Jin

Affiliation(s):

Samsung Research China - Beijing (SRC-B), China

1.8 USTC-IR

Member(s):

Bingchen Li (lbc31415926@mail.ustc.edu.cn), Xin Li

Affiliation(s):

University of Science and Technology of China, Hefei, China

1.9 MSDRSR

Member(s):

Mingxi Li (li_mx_0318@163.com), Ding Liu\(^{1}\)

Affiliation(s):

\(^{1}\) ByteDance Inc.

1.10 Giantpandacv Team

Member(s):

Wenbin Zou\(^{1,4}\) (alexzou14@foxmail.com), Peijie Dong\(^{2}\), Tian Ye\(^{3}\), Yunchen Zhang\(^{5}\), Ming Tan\(^{4}\), Xin Niu\(^{2}\)

Affiliation(s):

\(^1\) South China University of Technology, Guangzhou, China

\(^2\) National University of Defense Technology, Changsha, China

\(^3\) Jimei University, Xiamen, China

\(^4\) Fujian Normal University, Fuzhou, China

\(^5\) China Design Group Inc., Nanjing, China

1.11 Aselsan Research Team

Member(s):

Mustafa Ayazoğlu (mayazoglu@aselsan.com.tr)

Affiliation(s):

Aselsan (www.aselsan.com.tr), Ankara, Turkey

1.12 SRMUI Team

Member(s):

Marcos V. Conde\(^1\) (marcos.conde-osorio@uni-wuerzburg.de), Ui-Jin Choi\(^2\), Radu Timofte\(^1\)

Affiliation(s):

\(^1\) Computer Vision Lab, Julius Maximilian University of Würzburg, Germany

\(^2\) MegaStudyEdu, South Korea

1.13 MVideo Team

Member(s):

Zhuang Jia (jiazhuang@xiaomi.com), Tianyu Xu, Yijian Zhang

Affiliation(s):

Xiaomi Inc.

1.14 UESTC+XJU CV Team

Member(s):

Mao Ye (cvlab.uestc@gmail.com), Dengyan Luo, Xiaofeng Pan

Affiliation(s):

University of Electronic Science and Technology of China, Chengdu, China

1.15 cvlab Team

Member(s):

Liuhan Peng\(^1\) (pengliuhan@gmail.com), Mao Ye\(^2\)

Affiliation(s):

\(^1\) Xinjiang University, Xinjiang, China

\(^2\) University of Electronic Science and Technology of China, Chengdu, China

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, R. et al. (2023). AIM 2022 Challenge on Super-Resolution of Compressed Image and Video: Dataset, Methods and Results. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13803. Springer, Cham. https://doi.org/10.1007/978-3-031-25066-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25066-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25065-1

  • Online ISBN: 978-3-031-25066-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics