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Abstract. Neural architecture search (NAS) algorithms save tremen-
dous labor from human experts. Recent advancements further reduce the
computational overhead to an affordable level. However, it is still cum-
bersome to deploy the NAS techniques in real-world applications due to
the fussy procedures and the supervised learning paradigm. In this work,
we propose the self-supervised and weight-preserving neural architecture
search (SSWP-NAS) as an extension of the current NAS framework by
allowing the self-supervision and retaining the concomitant weights dis-
covered during the search stage. As such, we simplify the workflow of
NAS to a one-stage and proxy-free procedure. Experiments show that the
architectures searched by the proposed framework achieve state-of-the-
art accuracy on CIFAR-10, CIFAR-100, and ImageNet datasets without
using manual labels. Moreover, we show that employing the concomitant
weights as initialization consistently outperforms the random initializa-
tion and the two-stage weight pre-training method by a clear margin
under semi-supervised learning scenarios. Codes are publicly available
at https://github.com/LzVv123456/SSWP-NAS.

Keywords: Self-supervised Learning, Neural Architecture Search, Pre-
training, Image Classification

1 Introduction

The development of NAS algorithms save considerable time and efforts of hu-
man experts through automating the neural architecture design process. It has
achieved state-of-the-art performances in a series of vision tasks including image
recognition [49,50,32], semantic segmentation [19,46] and object detection [39,9].
Recent advances on weight-sharing NAS [30] and differentiable NAS [23,41] fur-
ther reduce the searching cost from thousands of GPU-days to a couple.
Despite the significant computational reduction made by current NAS meth-
ods, it is still cumbersome to deploy the NAS techniques in real-world applica-
tions due to the fussy procedures. As shown in Fig. 1, a typical workflow of NAS
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Fig. 1: Overview for the regime of general NAS and the proposed SSWP-NAS.

consists of the surrogate-structure search and the architecture selection two steps
to acquire the architecture. Then a standalone procedure of weight pre-training
need to be taken before transferring the architecture to downstream tasks. It
is non-trivial to pre-train a network, taking even more time than the searching
process. Besides, existing NAS workflows largely rely on manual annotations,
making the domain-specific NAS even more unwieldy.

Driven by the inconvenience of the current NAS paradigm, we propose a
new framework, namely self-supervised and weight-preserving neural architec-
ture search (SSWP-NAS), as an extension of the current NAS methodology
with the following two prominent properties: (1) SSWP-NAS is self-supervised
so that it does not rely on manual signals to perform optimization. This property
also removes the dependency on proxy-datasets (e.g. ImageNet [34]). (2) SSWP-
NAS has the weight-preserving property, which means the concomitant weights
generated during the search process can be retained and serve as initialization
to benefit transfer learning. This property simplifies the current NAS workflow
from the two-stage fashion to the one-stage. To achieve weight-preserving, we
align the dimensionality of the network used during the search and train stage
and leverage stochastic operation sampling strategy to reduce the memory foot-
print. To remove the dependency on manual labels, we probe how the designed
searching process copes with the self-supervised learning objective. We also ob-
serve a persistent optimization challenge dubbed network inflation issue caused
by the inconsistent optimization targets and the stochastic strategy. To over-
come this challenge, we propose the forward progressive prune (FPP) operation
that gradually bridges the gap between the optimization targets and reduces the
extend of stochastic operations.

In experiments, the searched architecture using SSWP-NAS achieve state-
of-the-art accuracy on CIFAR-10 (2.41% error rate), CIFAR-100 (16.47% error
rate), and ImageNet (24.3% top-1 error rate under restricted resources) without
using manual labels. Besides, concomitant weights as initialization consistently
outperforms the random initialization and the two-stage weight pre-training
method by a clear margin under semi-supervised learning scenarios. Moreover,
we show that self-supervised learning objective consistently outperforms the su-
pervised counterpart in our framework and FPP is beneficial under both super-
vised and self/un-supervised learning objectives. Comprehensive ablation studies
have also been conducted towards the proposed designs. Our main contributions
can be summarized in three-fold:
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— We propose the SSWP-NAS that enjoys the self-supervised learning and
weight-preserving property. It simplifies the current NAS workflow from the
two-stage manner to the one stage. As a by-product, SSWP-NAS is also
proxy-free, which means it relies on neither the surrogate structure nor the
proxy-dataset.

— We propose the FPP to address the network inflation issue that occurs during
the designed weight-preserving search process. We empirically show that
FPP is beneficial under both supervised and self/un-supervised signals.

— SSWP-NAS searches the architecture and generate the pre-train weights con-
currently while achieving state-of-the-art performance regarding the quality
of both the architecture and the pre-train weights.

2 Related Work

Neural Architecture Search. FEarly works for NAS mainly leverage on re-
inforcement learning (RL) [49,50] or evolutionary algorithms (EA) [32,22] to
optimize a controller that samples a sequence of discrete operations to form
the architecture. This straightforward implementation consumes tremendous
computational resources. As a remedy, the following works rely on the weight-
sharing [30,23] methods and surrogate structures [50,23] to reduce the compu-
tational overhead. DARTS [23] further simplify the NAS framework by relaxing
the search space from discrete to continuous. This One-shot searching framework
then becomes popular in the NAS domain due to its simplicity and efficiency.
The proposed SSWP-NAS also inheres to this line of research. While the origi-
nal DARTS design is observed to suffer from performance degeneration [4] and
mode collapse [18] issue. To this end, DARTS+ [18] introduces the early stop
to suppress the over-characterized non-parameterized operations. P-DARTS [4]
tries to alleviate the performance drop by gradually increasing the depth of the
surrogate structure. ProxylessNAS [2] first achieves the differentiable architec-
ture search without a surrogate structure. Despite the advancements made above
methods, they still rely on supervised signals to perform optimization, and none
of them are able to preserve the concomitant weights.

Self-supervised Learning. Not until recently, self-supervised learning largely
relies on heuristic pretext tasks [8,27,44,48] to form the supervision signal, and
their performance lags behind a lot compared with the supervised counterpart.
Emerging of the contrastive-based self-supervised learning largely close the gap
between the self-supervised and supervised weight pre-training [28,38,11,3,17]. It
encourages a pulling force within a positive pair and pushing away negative pairs
through minimizing a discriminative loss function. BYOL [10] and SimSiam [5]
also demonstrate that the negative pairs are not necessary. In this work, we
investigate how state-of-the-art self-supervised learning methods cope with the
weight-preserving network search.

Self/un-supervised NAS. Most recently, some other works also explore the
self/un-supervised learning objective under the NAS framework. UnNAS [20]
explores how different pretexts tasks can replace the supervised discrimination
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task. It shows that labels are not necessary for NAS, and metrics used in pre-
text tasks can be a good proxy for the structure selection. RLNAS [45] shifts
from the performance-based evaluation metric to the convergence-based metric,
and it uses the random labels to generate supervision signals. Among self/un-
supervised NAS works, SSNAS [15] and CSNAS [26] are most similar to our
SSWP-NAS as they also explore the contrastive learning under the NAS frame-
work. Nevertheless, they only consider the picture from an architecture opti-
mization perspective, and their frameworks still fall into proxy-based searching.
Dissimilarly, we are searching for the architecture and concomitant weights as
integrity.

3 Methodology

In this section, we first introduce the prior knowledge about differential NAS
which serves as the foundation of our framework. Then we detail how to extend
the differential NAS towards the weight-preserving search and self-supervised
optimization. Afterward, we investigate the network inflation issue and propose
our solution. Finally, we demonstrate how to search a network (architecture plus
weights) using SSWP-NAS.

3.1 Preliminary: differentiable NAS

Neural architecture search (NAS) task is generally formulated as a bi-level op-
timization task [1,6] where the upper-level variable a refers to the architecture
parameters and lower-lever variable w represents the operation parameters:

min £yq(w* (@), ) (1)

s.t. w*(a) = argming Lirqin(w, o) ()

In practice, two sets of parameters are optimized in an alternative manner that
temporarily reduces the bi-level optimization to a single-level optimization. Dif-
ferential NAS (DARTS) [23] further includes the architecture parameters directly
to the computational graph through relaxing the search space from discrete to
continuous. Thus it can effectively evolve both architecture structure and oper-
ation weights leveraging the stochastic gradient descent [33] techniques.
Inspired by the success of manually-designed structural motifs, NAS meth-
ods also shift the searching target from the intact architecture to a cell struc-
ture [50,21,32] which is then used to stack the final architecture repetitively.
DARTS [23] also adopts this strategy by first searching a cell unit using a light-
weight proxy architecture followed by constructing the final architecture with
the searched cell structure. And the DARTS search space [23] represented by a
cell can be interpreted as a directed acyclic graph (DAG) which consists of 7
nodes and 14 edges. For each edge, it is associated with a collection of candidate
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operations @ weighted by a real-valued vector a™7) of size M = |O|. And the
information flow f; ; between node x; and x; is defined as:

ex a((f’j)
Foglw) = 30 e ) o) 3)

0€0 20'cO exp(at(:/’]))

where ¢ < j and an intermediate node is computed based on all its predecessors:
zj =3 ;; fij(xi). The final output of a cell is the concatenation of 4 intermedi-
ate nodes (except 2 input nodes and 1 output node) over the channel dimension.
Here we refer the DARTS [23] paper for more details.

3.2 Towards Weight-preserving

One of the most prominent challenges in NAS is the surge of the memory foot-
print and the computational overhead. As a remedy, the decomposition from the
whole architecture to the cell structure and the surrogate architecture searching
is proposed to function as a trade-off between accuracy and efficiency. While
reducing the computational overhead, the prevalence of such proxy strategy ex-
cludes the possibility of the weight-preserving property from the very beginning.
Due to the non-identical structures used during the search and the train stage,
concomitant weights discovered in the search phase are abandoned, and only the
searched cell structure is reserved for the downstream application.

To retain the concomitant weights, we first build our target architecture us-
ing the DARTS [23] search space, which is well-established and contains abun-
dant sub-graphs [43]. However, different from the DARTS and following ad-
vances [4,18], we align the dimensionality (widths and depths) of the architec-
ture utilized during the search and the train stage. We further allow different
cell structures at each level of the architecture. That is, instead of searching a
single cell structure as the building unit, we search a set of cells to form the final
architecture directly. As clued in section 3.1, this over-parameterized formation
will consume M = |O| times memory footprint compared with a compact archi-
tecture. Disregarding the proxy strategy that contradicts the weight-preserving
property in nature, we resort to stochastic algorithms [41,2,42] to cut down mem-
ory usage. Here, we adopt the path-binarization strategy, which is first proposed
in ProxylessNAS [2] to overcome the accuracy degeneration issue caused by the
depth-gap between the surrogate and the final architecture. Specifically, only a
single operation on an edge is sampled and activated stochastically according to
a learned distribution at each iteration. As such, the memory footprint during
the search is reduced to the same magnitude as a compact architecture.

Through renouncing the proxy strategy and adopting the stochastic tech-
nique, we meet the indispensable conditions towards the weight-preserving. While
in practice, we observe a consistently undesirable edge gained by the skip-
connection operation. Similar phenomenons have also been observed in pre-
vious supervised and proxy-based search [18,4,35]. Such over-ratings for non-
parameterized operations not only hinder the general quality of the structure,
but also result in insufficient updates of parameterized operations during the
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Fig.2: The proposed SSWP-NAS framework. 7 is a collection of data augmen-
tations, ¢’ and ¢’ are two transformations sampled from 7 that transfer image
x to two different views x’ and z”, respectively. Cell-structure plotted here is
simplified for the interpretation purpose.

lower-level optimization. To this end, we introduce a non-parameterized opera-
tion dropout (p = 0.2 across our experiments) during the lower-level optimiza-
tion. By doing so, we implicitly regularize the importance of non-parameterized
operation and increase the sampling odds for parameterized operation without
direct interference with the learned upper-level parameter distribution.

3.3 Towards Self-supervised Learning

It is conceptually straightforward to remove the dependency of the manual anno-
tation by replacing the supervised signal with a self/un-supervised counterpart.
Following the common practice of NAS, we are seeking a favorable architecture
through modeling the conditional probability (discriminative model) rather than
learning the joint distribution (generative model). As such, we subscribe our ex-
ploration for the learning objective to the discriminative sub-field. And among
the bag of self/un-supervised discriminative pretext tasks, contrastive learning
based methodologies [28,38,11,3,10] demonstrate an outstanding representation
learning ability over the peers. So we further focus our attention on probing
how the contrastive learning copes with the designed weight-preserving search
process.

Given that the concept of the positive and negative pair lies at core of the
contrastive learning, we study two representative methods, SimCLR [3] and
BYOL [10] which are formulated with and without negative pairs, respectively.
According to our pilot trials, BYOL only achieves 3.05% top-1 error rate on
cifar-10 while SimCLR achieving 2.56%. BYOL lags behind a lot. We observe
that the failure of the BYOL framework originates from the incompatible pat-
terns between the stochastic operation sampling and exponential moving aver-
age (EMA). BYOL essentially forms a teacher-student pair using the current
snapshot of the operation weights 6; and its corresponding EMA counterpart
0, = 10;,_1 + (1 — 7)0; where 7 is a smoothing factor. Then BYOL employees a
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symmetric consistency loss between the pair as the supervision signal. However,
stochastic operation sampling turns the parameter distribution 6, into & where &
and 6 are different operation distributions. As a result, this inconsistency causes
the mode collapse of the EMA, and thus fails the BYOL framework. As such,
we take the strategy from SimCLR [3] where positive pairs are formed by two
transformations of the same image and negative pairs are constructed using dif-
ferent images sampled from a mini-batch. The intact search architecture is then
optimized in an end-to-end manner through minimizing the infoNCE loss [36,40]
with mini-batch size N:

2N
»Cbatch = Z Cz (4)
=1

exp (sim(z;, zj(i))/T)
PO Lz exp(sim(zi, z))/T)

Here, z; = P(E(&;)). E(-) denotes the searching encoder architecture and P(+)
is a projection neck (multi-layer perception) added at end of the searching struc-
ture. The Subscript ¢ and j(i) refers to two different views of the same image.
And sim(-) measures the cosine similarity between two given vectors. Fig. 2 dis-
plays the construction of our framework. This self-supervision pipeline is totally
orthogonal to the search space and search process design. It is worth noting
that E;(-) # Ei—1(-) at different time steps and P(-) is only employed during
the search stage and being replaced by a linear classification layer for supervised
train stage. By leveraging this self-guided signal generation method, SSWP-NAS
gets rid of the dependency on manual labels.

L; = —log (5)

3.4 Network Inflation Challenge

Despite a neat couple made by the weight-preserving search and the self-supervised
optimization, it is challenging to optimize such a framework in practice. We ob-
serve that the difficulty comes from the combination of the over-parameterized
structure and the stochastic operation sampling strategy, which in together we
referred to as network inflation issue.

From the macro perspective, we are optimizing two sets of over-parameterized
variable distributions o and w alternatively through the whole searching phase.
At the end of search process, differentiable NAS [23] relies on the non-linear
prune operation to approximate the compact variable &* and w* using the over-
parameterized variable a* and w*. This leaping relaxation essentially relies on
the good generalization ability of the hierarchical convolutional structures. From
a micro view, a hierarchical convolutional structure can be viewed as a sequential
model. Given a random tie-breaking index ¢ in a N-layer structures at time step ¢,
we are maximizing posterior probability arg max,,, . p(wi~n|w}_,_;, D) where
D is the data distribution and subscript a ~ b denotes layer index from a to b.
Due to the stochastic sampling strategy, conditions wi;%_l #w!_,_ while w; .y
can be deemed as unchanged. Even though stochastic algorithm theoretically
guarantees the same global convergence, if it exists, this non-stationary condition
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Fig. 3: Different phases during the search stage.

increases the difficulty of optimization at each time step. Here we take the lower-
level variable w as an example, and the upper-level variable follows the similar
formulation.

To handle the network inflation challenge, we propose a simple and effective
solution, namely forward progressive prune (FPP). Different from the general
differentiable NAS pipeline where an architecture prune process is conducted
for the target cell structure at the end of the search stage. We impose a cell-
level progressive prune in the forward propagation direction during the search
stage. At each prune step, we prune all edges contained in a cell, and for each
edge, we only keep the operation with highest learned credit. By doing so, we re-
formulate the optimization target as arg max,, , p(wi~n|W;;_1, D) where the
condition wj,;_; is fixed and we transfer the optimization target from p(wi~n)
to p(w;~n|Wi ,_1) which is closer to the final goal p(w] ). As such, FPP grad-
ually aligns the searching optimization target with the final objective. And it
fixes the non-stationary conditions at some point during the search and allows
the following layers to adjust according to the preceding layers. The forward
propagation direction design follows the common acknowledgment that shallow
layers of a CNN architecture capture the low-level features which are easier to
learn and the deeper layers grab more semantics which rely on low-level features
to compose.

3.5 Searching with SSWP-NAS

SSWP-NAS is a proxy-free search, so one can search the target architecture, not
surrogate architecture, directly on target data domain without using labels. As
depicted in Fig. 3, the search stage of SSWP-NAS is divided into three phases.
At the warm-up phase, we only update operation parameters to allow a bet-
ter initialization of parameterized operations. Then we update both operation
parameters and architecture parameters alternatively as the standard differen-
tiable NAS. Finally, we start the FPP phase, in which we progressively perform
cell-level prune. The only extra hyper-parameter we introduce is the time span
of different phases. We empirically suggest that the split [0.2, 0.4, 0.4] works well
in general. Given the proportion for phase III, the time step for pruning of two

adjacent cells is calculated as Tiiep = 5 engl};ff; 51 P ratio
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4 Experiments

Experimental section is organized as following. We first provide the general set-
tings used across our experiments. In the second part, we isolate the concomi-
tant weights and benchmark the architecture quality searched using SSWP-NAS.
Then we conduct comprehensive ablation studies towards our designs. Finally,
we thoroughly study the effectiveness of concomitant weights. Detailed searched
architecture are attached in Appendiz C.

4.1 Experimental Settings

Following the well-established benchmark, we conduct our experiments on CIFAR-
10/100 [16] and ImageNet [34] three datasets. We search an architecture consist-
ing 20 cells with 36 initial channels for 300 epochs using mini-batch size 96 on
CIFAR-10/100. For ImageNet, we search a structure that contains 14 cells with
48 initial channels for 100 epochs using mini-batch size 256. The magnitudes
of searched architectures are kept the same as the final architecture trained in
DARTS [23]. All hyper-parameters used during the search and train stage, ex-
cept our proposed designs, are inherited from DARTS [23] without extra tricks.
We attach detailed hyper-parameters in Appendiz A. And 1, order optimization
is employed across all settings. Experiments related to CIFAR-10/100 [16] are
conducted on a single Nvidia A100 40GB and it scales up to 4 for ImageNet [34].

4.2 Benchmarking SSWP-NAS

CIFAR-10/100. We search SSWP-NAS for 300 (e = 300) and 500 (e = 500)
epochs on CIFAR dataset. Then we train the searched architecture from scratch
in a supervised manner. As shown in Table 1, SSWP-NAS,._309 achieves state-of-
the-art performance and outperforms DARTS (1, order) significantly by search-
ing the same epochs. When we extend the searching duration from 300 epochs
to 500 epochs, SSWP-NAS surpasses existing methods by a clear margin.
ImageNet. We search 50 and 100 epochs on ImageNet [34] and then train
the searched structure for 250 epochs. As displayed in Table 2, SSWP-NAS
also achieves state-of-the-art accuracy on ImageNet under limited budgets. One
potential drawback is that SSWP-NAS takes a relative longer time to search
when considering the architecture solely as we are directly searching for the
final structure instead of a surrogate structure. However, the weight-preserving
property offsets this computational overhead as all other methods need an extra
non-trivial pre-train step. By achieving state-of-the-art performance on both
CIFAR and ImageNet datasets, it also manifests the generality of the proposed
SSWP-NAS framework.

4.3 Ablation Study

For simplicity, we abbreviate self-supervised learning and supervised learning as
SSL and SL, respectively, in the following sections.
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Table 1: Comparisons between SSWP-NAS and state-of-the-art methods on
CIFAR-10/100. Here the search cost only counts the time used for the search.
proxy-based methods commonly need another architecture selection procedure
which generally costs another 1 GPU day [23]. While this procedure is not needed

in our framework.

. Test Error (%) Params Search Cost  Search Search

Architecture

CIFAR-10 CIFAR-100 (M) (GPU days) Type Method
DenseNet-BC[14] 3.46 17.18 25.6 - supervised manual
NASNet-A[50] 2.65 - 3.3 1800 supervised RL
AmoebaNet-A[32] 3.3440.06 - 3.2 3150 supervised  evolution
AmoebaNet-B[32] 2.55 £+ 0.05 - 2.8 3150 supervised  evolution
PNAS|21] 3.41 +0.09 - 3.2 225 supervised SMBO
Hireachical Evolution [22] 3.75 £ 0.12 - 15.7 300 supervised evolution
ENAS[30] 2.89 - 4.6 0.5 supervised RL
NAONet[24] 3.18 15.67 10.6 200 supervised NAO
DARTS (1st order)[23] 3.0+0.14 17.76 3.3 1.5 supervised gradient
DARTS (2nd order)[23]  2.76 & 0.09 17.54 3.3 4.0 supervised gradient
SNAS (moderate)[41] 2.85+0.02 - 2.8 1.5 supervised gradient
ProxylessNAS-G[2] 2.08 - 5.7 4.0 supervised gradient
P-DARTS[4] 2.50 16.55 3.4 0.3 supervised gradient
PC-DARTS[42] 2.57 +0.07 - 3.6 0.1 supervised gradient
BayesNAS[47] 2.81+£0.04 - 34 0.2 supervised gradient
CSNASN—5[26] 2.66 £+ 0.07 - 34 1.0 self-supervised SMBO-TPE
SSNASJ15] 2.61 16.64 - - self-supervised gradient
SSWP-NAS._300" 2.56 £ 0.07 17.27 4.0 1.0 self-supervised gradient
SSWP-NASEZWUT 2.41 +0.07 16.47 3.8 1.8 self-supervised gradient

f: run 5 times with different seeds.

Table 2: Comparison with state-of-the-art architectures on ImageNet (restricted
resources)

. Test Error (%) Params x+ Search Cost  Search Search

Architecture -
Top-1 Top-5 (M) (M) (GPU days) Type Method

Inception-v2 [37] 25.2 7.8 11.2 - - - manual
MobileNet-v3 (Large 1.0) [13] 24.8 - 54 219 - - manual
ShuffleNet (2% )-v2 [25] 25.1 - = 591 - - manual
NASNet-A [50] 26.0 8.4 5.3 564 2000 supervised RL
AmoebaNet-A [32] 25.5 8.0 51 555 3150 supervised  evolution
AmoebaNet-B [32] 26.0 8.5 5.3 555 3150 supervised  evolution
PNAS [21] 25.8 8.1 5.1 588 255 supervised SMBO
DARTS (2nd order) [23] 26.7 8.7 4.7 574 4 supervised gradient
P-DARTS [4] 24.1 7.3 5.4 597 2.0 supervised gradient
PC-DARTS [42] 24.2 7.3 5.3 597 3.8 supervised gradient
ProxylessNAS [2] 24.9 7.5 7.1 465 8.3 supervised gradient
SSNAS [15] 27.8 9.6 5.2 - - self-supervised ~ gradient
CSNASN—5 [26] 25.8 8.3 5.1 590 2.5 self-supervised SMBO-TPE
SSWP-NAS._50 24.8 7.8 5.0 597 3.5 self-supervised — gradient
SSWP-NAS._100 24.3 7.5 4.9 595 7 self-supervised gradient
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Table 3: Ablation studies on learning objective, FPP, skip-connection dropout
and proxy-free search.

(a) SSL vs. SL and FPP. Ablations for (c) Dropout for skip-connection. Aba-

learning objectives and FPP. tions on different dropout rate for skip
connections.
Name Test Error (%) Dataset Search Epoch
SL 2.92 CIFAR-10 300 Name Test Error (%) Dataset Seach Epoch
SL+BPP 2.93 CIFAR-10 {’)OO 10 drop 2.63 CIFAR-10 300
SL+FPP 2.77 CIFAR-10 300 05 d 268 CIFAR-10 300
SSL 2.65 CIFAR-10 300 2 Arop : -

SSL+BPP 273  CIFAR-10 300 0.2drop 256  CIFAR10 300

SSL+FPP 2.56 CIFAR-10 300

(d) Proxy-free search. Ablations for

(b) FPP time span. Abations for differ- searching w/o proxy dataset.
ent ratios of searching phases.

Name Accuracy (%) Search Search Train
Top-1 Top-5 Epoch Dataset Dataset
Name Test Error (%)  Ratio  Dataset Seach Epoch transfer  69.6 88.45 600  CIFAR-10 ImageNet-tiny
shorter 2.65 [0.2,0.6,0.2] CIFAR-10 300 proxy-free 70.53 88.54 300 ImageNet-tiny ImageNet-tiny
longer 2.68 [0.2,0.2,0.6] CIFAR-10 300
default 2.56 [0.2,0.4,0.4] CIFAR-10 300

SSL vs. SL. In order to substantiate the effectiveness of SSL, we compare it with
the SL (cross-entropy loss function). By keeping all other settings the same, we
switch between SL and SSL objectives. As shown in Table 3a, SSL outperforms
SL significantly in our framework. This result not only exhibits the inessentiality
of human annotations for architecture search, but also suggests that the man-
ual interference may function adversely by limiting the optimization manifold.
SSL objective may support learning a more generic structure for feature extrac-
tion. Beyond this frank improvement, we further show that the SSL searched
architecture boosts the self-supervised weight pre-training in Appendiz B

Effectiveness of FPP. To demonstrate the effectiveness of the FPP module,
we implement SSWP-NAS with and without FPP. When disregarding FPP, we
remove phase III during the search and adjust the ratio of phases I and II to
0.2 and 0.8 accordingly. Then the architecture prune process is conducted once
for all cells after the search stage. Besides the original FPP, we also implement
a reversed version, namely backward progressive pruning (BPP), that starts
pruning from the last cell and propagates backwardly. According to Table 3a,
FPP consistently improves the qualities of the searched architectures under both
SSL and SL scenarios. BPP, on the contrary, even degenerates the performances.
This result coincides with our knowledge that shallow layers extract low-level
features, which are easy to learn. In contrast, deeper layers capture higher-level
semantic features and leverage the low-level features to compose.

Time span of FPP. In this subsection, we study the role of time span in the
FPP process and recommend the default setting. We allow a longer and a shorter
FPP time span by adjusting the ratio to [0.2,0.2,0.6] and [0.2, 0.6, 0.2], respec-
tively. Table 3b compares the result of different time spans. It is shown that a
balanced split between phase II and phase III strikes for a better result. Shorter
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Fig. 4: For ablations of searching epochs, we fix the batch-size to 96 and increas-
ing the searching epochs from 100 to 800. As for ablations of the batch-size, we
fix the searching epoch as 300 and scale batch-size from 64 and 256.

FPP may result in the under-optimization of a single cell during the pruning
phase. Longer FPP may squeeze the space of the normal bi-level optimization
process, leading to potentially sub-optimal results. And a longer searching dura-
tion will relieve pressures of both phases by allowing more epochs at each phase
and thus leads to a better result, as shown in Fig. 4.

Dropout for skip-connection. Here we add a dropout rate for skip-connection
during the lower-level optimization process. As shown in Table 3c, using a p = 0.2
(result from a coarse grid search) improves the overall quality of the architecture.
However, the architecture quality is relatively sensitive to the dropout rate as
the skip-connection is a crucial component to prevent gradient vanishing issue.
Over-suppressing of the skip-connection can hamper the performance.
Proxy-free search. It is well-established [12,31,3] that the performance of
transfer learning drops when the gap between the target domain and the pre-
trained domain is large. Given these priors, we focus on how proxy-free search
can benefit the architecture quality. We use ImageNet-tiny [34] as the target
domain and treat CIFAR-10 [16] as the proxy domain. Then we carry out trans-
fer learning and proxy-free search. We doubled the search epochs on CIFAR-10
to keep the same iterations used during the search (ImageNet-tiny contains 10°
images with size 64 x 64, and CIFAR-10 contains 5 x 10* images with size 32 x 32
in the training dataset). So the only difference between the two settings is the
domain gap (image dimension, context, etc.) itself. As shown in Table 3d, proxy-
free search results in a better architecture quality. This result suggests that given
the existence of labeled proxy datasets, it is still favorable to search on the target
domain directly without the label.

Impact of epochs and batch-size. As verified in self-supervised weight pre-
training [3,11,10], network weights benefit from longer training and larger mini-
batch size. Therefore, we examine how these two hyper-parameters affect the ar-
chitecture searching process. As displayed in Fig. 4, in consent with SSL weight
pre-training, the quality of searched architecture also improves as the search-
ing duration increases. It saturates around 500 epochs on CIFAR-10/100. This
result encourages a longer searching epoch and manifests that our design does
not suffer from the mode collapse issue [18,2]. And even searching for only 100
epochs (cost 0.4 GPU-day) on CIFAR-10, SSWP-NAS still surpasses DARTS
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Fig.5: Performances of the random initialization, simclr weight pre-train and
concomitant weights on CIFAR-10/100 under different training data proportions.

(15¢ order) [23]. Dissimilar to weight pre-training, the searched architecture does
not take advantage of a larger mini-batch size in our approach referencing Fig. 4.
As a result, one can use SSWP-NAS reliably under the limited GPU memory
without worrying about the degeneration of architecture quality. However, this
conclusion is only effective under the scenario where the magnitude of mini-
batch size is a few hundred. We do not verify the impact of mini-batch size in
thousands as used in several self-supervised weight-pretraining works [3,11,10,5].

4.4 Weight-preserving Benefits Semi-supervised Learning

In this section, we use both the searched architecture and concomitant weights
from SSWP-NAS and probe their performances under semi-supervised scenarios.
In particular, we first search using SSWP-NAS for 500 epochs with batch-size 96
on CIFAR dataset (train data). Then we gradually reduce the labeled training
data from 90% to 10% with step-size 20% to mimic semi-supervised learning
scenarios. Two baselines are included to demonstrate the effectiveness of con-
comitant weights. The first baseline noted as random initialization only uses the
architecture. It is then trained from scratch using the given data ratio with a
random initialization. The second baseline,simclr pre-train, in which we take the
architecture searched by SSWP-NAS and pre-train it using SimCLR [3] for an-
other 500 epochs using the same batch-size. The second baseline corresponds to
a common two-stage framework without weight-preserving property. All three
methods share the same architecture and the only difference is how they are
initialized. We run the above settings on both CIFAR-10 and CIFAR-100.

As shown in Fig. 5, concomitant weights transfer clear positive information
by outperforming the random initialization significantly. The gap between the
concomitant weights and random initialization is bridged when using around
60% train data on CIFAR-10. However, this benefit diminishes not until around
90% of the train data on CIFAR-100. This result agrees with our intuition that
self-supervised weight pre-training contributes more when labels are relatively
scarce for each category, and the task is more challenging. More importantly, con-
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Table 4: Ablation studies regarding concomitant weights.

(a) Comparisons of the two-stage pre- (b) Impact of dropout and FPP on con-
trained weights with the concomitant comitant weights.
weights under different learning rates.

FPP Dropout Relative gain Train data ratio Dataset

. Accuracy (%) . X X - 50% CIFAR-100
Learning———————~ "7 Train data

rate  SimCLR Concomitant ratio (%) Dataset X v 0.23 50% CIFAR-100

Pre-train  Weight v X 0.01 50% CIFAR-100

0.0l  75.82 73.18 50%  CIFAR-100 o/ 0.19 50% CIFAR-100
0.025  76.1 74.96 50%  CIFAR-100
0.1 76.0 77.2 50%  CIFAR-100
0.2 75.99 77.54 50%  CIFAR-100
0.5 74.18 75.7 50%  CIFAR-100

comitant weights also surpass the two-stage framework pre-trained using Sim-
CLR [3] except for the extremely scare data setting (with only 10% data). On
the one hand, this result substantiates our contribution by merging the common
two-stage pipeline into one-stage; on the other hand, it further suggests an in-
teresting potential that evolving both architecture and weights simultaneously
may serve a better paradigm than the current isolated manner.

To better understand the differences between two-stage pre-trained weights
and our concomitant weights, we further verify their reactions to different learn-
ing rates. Here we use 50% data from CIFAR-100 as a proxy-task. Table 4a shows
that, unlike the typical two-stage pre-trained weights, concomitant weights con-
sistently enjoy a larger learning rate. This result implies different statistical dis-
tributions between the concomitant weights and two-stage pre-trained weights.

Finally, we also investigate the impact of proposed modules on the quality
of concomitant weights. Since architecture and concomitant weights are evolved
simultaneously, we can not drive to the conclusion by direct comparing the accu-
racy. To this end, we use relative gain to isolate the impact of the target operation
towards the concomitant weights. relative gain = (acc} —accy’) — (acc§ — accy)
where superscript w/o denotes with or without target operation. Subscript f
and s represents fine-tuning and train from scratch, respectively. By doing so,
we offset the influence of the architecture structure and focus on concomitant
weights. As exhibited in Table 4b, dropout improves the quality of concomitant
weights, this result agree with our assumption that insufficient update of pa-
rameterized operation may hinder the quality of the concomitant weights. And
according to experiments, FPP does not have a clear impact on overall quality
of concomitant weights.

5 Conclusion

In this work, Instead of trying to further reduce the computational overhead of
the search process, the proposed SSWP-NAS strikes for a simplified workflow of
NAS. It enjoys both self-supervising and weight-preserving two properties. Ex-
periments show that self-supervised learning consistently benefits SSWP-NAS,
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and the concomitant weights successfully merge the two-stage framework into
the one stage. Comprehensive ablation studies substantiate the effectiveness of
our proposed designs. For future work, it is important to probe how architecture
and concomitant weights can boostrap each other. And it is also compelling to
design the new self-supervised paradigm specifically for joint-optimization of ar-
chitecture and concomitant weights. From the practical consideration, enabling
multi-objective and hardware-aware learning would be useful.
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Supplementary Materials

We abbreviate self-supervised learning and supervised learning as SSL and SL
for simplicity.

6.1 Detailed Hyper-parameters

Detailed hyper-parameters used for both search and train stages are listed in
Table 5. We follow the same suggestions as described in DARTS [23] and Prox-
ylessNAS [2]. Variable w refers to the lower-level parameter (operation weights)
and a denotes upper-level parameter (architecture weights). To speed up the
training process for ImageNet, we also employ the distributed data-parallel, the
automatic mixed precision, and the synchronized batch normalization techniques
implemented in pytorch [29] framework.

Table 5: Detailed hyper-parameters used across the experiments.

Hyper- CIFAR-10/100 ImageNet
parameters Search Train Search Train
batch size 96 128 256 1024

learning rate (w) 0.025 0.025 0.025 0.4
minimum learning rate (w) 0 0 0 0
optimizer (w) sgd sgd sgd sgd
scheduler (w) CosineAnnearling CosineAnnearling CosineAnnearling CosineAnnearling
momentum (w) 0.9 0.9 0.9 0.9
weight decay (w) 4x107° 3x107* 4% 107° 3x107*
learning rate () 0.001 - 0.001 -
optimizer () adam - adam -
adam S 0 - 0 -
adam s 0.99 - 0.99 -
auxiliary weight - 0.4 - 0.4
cutout [7] length - 16 - -

drop-path rate - 0.3 - -
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6.2 Self-supervised architecture search benefits self-supervised
weight pre-training

In this section, we show that architecture searched by self-supervised learning
objective also benefits the typical self-supervised weight pre-training method.
We first search two architectures using supervised and self-supervised learning
objectives, respectively. Then we pre-train the two searched architectures us-
ing the SImCLR [3] framework. Finally, we conduct the standard linear probe
experiments [3,11,10,5] on pre-trained two networks with the same setting. As
shown in Table 6, SSL searched architecture also benefits the downstream SSL
based weight pre-training in a typical two-stage workflow (architecture search
and weight pre-training are treated separately). This result suggests that the
performance of the architecture and its corresponding weights are correlated
under the SSL framework. It is recommended to use SSL-based NAS instead
of SL-based NAS when considering using a self-supervised weight pre-training
method.

Table 6: Linear probe results for architectures searched with SSL and SL.

Search Pre-train Search  Pre-train
epoch epoch dataset  dataset

SL 64.4 300 150  CIFAR-10 CIFAR-10
SSL 65.0 300 150 CIFAR-10 CIFAR-10

Name Accuracy (%)

6.3 Architecture Structure Searched by SSWP-NAS

Detailed architecture structures searched by SSWP-NAS are attached as Fig. 6.
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Fig. 6: Detailed architecture structures searched by SSWP-NAS. Architectures
from left to right correspond to searching 300 epochs on CIFAR-10/100, 500
epochs on CIFAR-10/100, and 100 epochs on ImageNet accordingly.
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