Skip to main content

FairDisCo: Fairer AI in Dermatology via Disentanglement Contrastive Learning

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Abstract

Deep learning models have achieved great success in automating skin lesion diagnosis. However, the ethnic disparity in these models’ predictions, where lesions on darker skin types are usually underrepresented and have lower diagnosis accuracy, receives little attention. In this paper, we propose FairDisCo, a disentanglement deep learning framework with contrastive learning that utilizes an additional network branch to remove sensitive attributes, i.e. skin-type information from representations for fairness and another contrastive branch to enhance feature extraction. We compare FairDisCo to three fairness methods, namely, resampling, reweighting, and attribute-aware, on two newly released skin lesion datasets with different skin types: Fitzpatrick17k and Diverse Dermatology Images (DDI). We adapt two fairness-based metrics DPM and EOM for our multiple classes and sensitive attributes task, highlighting the skin-type bias in skin lesion classification. Extensive experimental evaluation demonstrates the effectiveness of FairDisCo, with fairer and superior performance on skin lesion classification tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adegun, A., Viriri, S.: Deep learning techniques for skin lesion analysis and melanoma cancer detection: a survey of state-of-the-art. Artif. Intell. Rev. 54(2), 811–841 (2021)

    Article  Google Scholar 

  2. AlKattash, J.A.: Dermaamin. https://www.dermaamin.com/site/ (2022)

  3. Alvi, Mohsan, Zisserman, Andrew, Nellåker, Christoffer: Turning a blind eye: explicit removal of biases and variation from deep neural network embeddings. In: Leal-Taixé, Laura, Roth, Stefan (eds.) ECCV 2018. LNCS, vol. 11129, pp. 556–572. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11009-3_34

    Chapter  Google Scholar 

  4. Balch, C.M., et al.: Final version of 2009 AJCC melanoma staging and classification. J. Clin. Oncol. 27(36), 6199 (2009)

    Article  Google Scholar 

  5. Barata, C., Celebi, M.E., Marques, J.S.: A survey of feature extraction in dermoscopy image analysis of skin cancer. IEEE J. Biomed. Health Inform. 23(3), 1096–1109 (2018)

    Article  Google Scholar 

  6. Bellamy, R.K., et al.: Ai fairness 360: an extensible toolkit for detecting and mitigating algorithmic bias. IBM J. Res. Dev. 63(4/5), 1–4 (2019)

    Article  Google Scholar 

  7. Bendekgey, H., Sudderth, E.: Scalable and stable surrogates for flexible classifiers with fairness constraints. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  8. Beutel, A., Chen, J., Zhao, Z., Chi, E.H.: Data decisions and theoretical implications when adversarially learning fair representations. arXiv preprint arXiv:1707.00075 (2017)

  9. Bevan, P.J., Atapour-Abarghouei, A.: Detecting melanoma fairly: skin tone detection and debiasing for skin lesion classification. arXiv preprint arXiv:2202.02832 (2022)

  10. Bhardwaj, Aditya, Rege, Priti P..: Skin lesion classification using deep learning. In: Merchant, S.. N.., Warhade, Krishna, Adhikari, Debashis (eds.) Advances in Signal and Data Processing. LNEE, vol. 703, pp. 575–589. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-8391-9_42

    Chapter  Google Scholar 

  11. Chabi Adjobo, E., Sanda Mahama, A.T., Gouton, P., Tossa, J.: Towards accurate skin lesion classification across all skin categories using a PCNN fusion-based data augmentation approach. Computers 11(3), 44 (2022)

    Article  Google Scholar 

  12. Daneshjou, R., et al.: Disparities in dermatology AI: assessments using diverse clinical images. arXiv preprint arXiv:2111.08006 (2021)

  13. Du, M., Yang, F., Zou, N., Hu, X.: Fairness in deep learning: a computational perspective. IEEE Intell. Syst. 36(4), 25–34 (2020)

    Article  Google Scholar 

  14. El-Khatib, H., Popescu, D., Ichim, L.: Deep learning-based methods for automatic diagnosis of skin lesions. Sensors 20(6), 1753 (2020)

    Article  Google Scholar 

  15. Elazar, Y., Goldberg, Y.: Adversarial removal of demographic attributes from text data. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 11–21 (2018)

    Google Scholar 

  16. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)

    Article  Google Scholar 

  17. Fitzpatrick, T.B.: The validity and practicality of sun-reactive skin types I through VI. Arch. Dermatol. 124(6), 869–871 (1988)

    Article  Google Scholar 

  18. Gessert, N., Nielsen, M., Shaikh, M., Werner, R., Schlaefer, A.: Skin lesion classification using ensembles of multi-resolution efficientnets with meta data. MethodsX 7, 100864 (2020)

    Article  Google Scholar 

  19. Gessert, N., et al.: Skin lesion classification using CNNs with patch-based attention and diagnosis-guided loss weighting. IEEE Trans. Biomed. Eng. 67(2), 495–503 (2019)

    Article  Google Scholar 

  20. Groh, M., Harris, C., Daneshjou, R., Badri, O., Koochek, A.: Towards transparency in dermatology image datasets with skin tone annotations by experts, crowds, and an algorithm. arXiv preprint arXiv:2207.02942 (2022)

  21. Groh, M., et al.: Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1820–1828 (2021)

    Google Scholar 

  22. Harangi, B.: Skin lesion classification with ensembles of deep convolutional neural networks. J. Biomed. Inform. 86, 25–32 (2018)

    Article  Google Scholar 

  23. Hazirbas, C., Bitton, J., Dolhansky, B., Pan, J., Gordo, A., Ferrer, C.C.: Casual conversations: A dataset for measuring fairness in AI. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2289–2293 (2021)

    Google Scholar 

  24. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9729–9738 (2020)

    Google Scholar 

  25. Healsmith, M., Bourke, J., Osborne, J., Graham-Brown, R.: An evaluation of the revised seven-point checklist for the early diagnosis of cutaneous malignant melanoma. Br. J. Dermatol. 130(1), 48–50 (1994)

    Article  Google Scholar 

  26. Henning, J.S., et al.: The cash (color, architecture, symmetry, and homogeneity) algorithm for dermoscopy. J. Am. Acad. Dermatol. 56(1), 45–52 (2007)

    Article  Google Scholar 

  27. Jamil, U., Khalid, S.: Comparative study of classification techniques used in skin lesion detection systems. In: 17th IEEE International Multi Topic Conference 2014, pp. 266–271. IEEE (2014)

    Google Scholar 

  28. Kamiran, F., Calders, T.: Data preprocessing techniques for classification without discrimination. Knowl. Inf. Syst. 33(1), 1–33 (2012)

    Article  Google Scholar 

  29. Kawahara, J., BenTaieb, A., Hamarneh, G.: Deep features to classify skin lesions. In: 2016 IEEE 13th international symposium on biomedical imaging (ISBI), pp. 1397–1400. IEEE (2016)

    Google Scholar 

  30. Khosla, P., et al.: Supervised contrastive learning. Adv. Neural. Inf. Process. Syst. 33, 18661–18673 (2020)

    Google Scholar 

  31. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  32. Kinyanjui, Newton M.., et al.: Fairness of classifiers across skin tones in dermatology. In: Martel, Anne L.., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 320–329. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_31

    Chapter  Google Scholar 

  33. Li, X., Cui, Z., Wu, Y., Gu, L., Harada, T.: Estimating and improving fairness with adversarial learning. arXiv preprint arXiv:2103.04243 (2021)

  34. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on bias and fairness in machine learning. ACM Comput Surv. (CSUR) 54(6), 1–35 (2021)

    Article  Google Scholar 

  35. Nachbar, F., et al.: The ABCD rule of dermatoscopy: high prospective value in the diagnosis of doubtful melanocytic skin lesions. J. Am. Acad. Dermatol. 30(4), 551–559 (1994)

    Article  Google Scholar 

  36. Petersen, F., Mukherjee, D., Sun, Y., Yurochkin, M.: Post-processing for individual fairness. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  37. Puyol-Antón, Esther, et al.: Fairness in cardiac MR image analysis: an investigation of bias due to data imbalance in deep learning based segmentation. In: de Bruijne, Marleen, et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 413–423. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_39

    Chapter  Google Scholar 

  38. Samuel, F.D.S.: Atlas dermatologico. http://atlasdermatologico.com.br/index.jsf (2022)

  39. Sarhan, Mhd Hasan, Navab, Nassir, Eslami, Abouzar, Albarqouni, Shadi: Fairness by learning orthogonal disentangled representations. In: Vedaldi, Andrea, Bischof, Horst, Brox, Thomas, Frahm, Jan-Michael. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 746–761. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_44

    Chapter  Google Scholar 

  40. Sung, H., et al.: Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Can. J. Clin. 71(3), 209–249 (2021)

    Google Scholar 

  41. Thota, M., Leontidis, G.: Contrastive domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2209–2218 (2021)

    Google Scholar 

  42. Wadsworth, C., Vera, F., Piech, C.: Achieving fairness through adversarial learning: an application to recidivism prediction (2018)

    Google Scholar 

  43. Wang, P., Han, K., Wei, X.S., Zhang, L., Wang, L.: Contrastive learning based hybrid networks for long-tailed image classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 943–952 (2021)

    Google Scholar 

  44. Wang, T., Zhao, J., Yatskar, M., Chang, K.W., Ordonez, V.: Balanced datasets are not enough: estimating and mitigating gender bias in deep image representations. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5310–5319 (2019)

    Google Scholar 

  45. Wang, Z., et al.: Towards fairness in visual recognition: effective strategies for bias mitigation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8919–8928 (2020)

    Google Scholar 

  46. Wang, Z., et al.: Fairness-aware adversarial perturbation towards bias mitigation for deployed deep models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10379–10388 (2022)

    Google Scholar 

  47. WHO: Cancer (2022). https://www.who.int/news-room/fact-sheets/detail/cancer

  48. Wu, Y., Zeng, D., Xu, X., Shi, Y., Hu, J.: Fairprune: achieving fairness through pruning for dermatological disease diagnosis. arXiv preprint arXiv:2203.02110 (2022)

  49. Xu, Tian, White, Jennifer, Kalkan, Sinan, Gunes, Hatice: Investigating bias and fairness in facial expression recognition. In: Bartoli, Adrien, Fusiello, Andrea (eds.) ECCV 2020. LNCS, vol. 12540, pp. 506–523. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65414-6_35

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyi Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Du, S., Hers, B., Bayasi, N., Hamarneh, G., Garbi, R. (2023). FairDisCo: Fairer AI in Dermatology via Disentanglement Contrastive Learning. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13804. Springer, Cham. https://doi.org/10.1007/978-3-031-25069-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25069-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25068-2

  • Online ISBN: 978-3-031-25069-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics