Abstract
Pretraining has proven successful in Document Intelligence tasks where deluge of documents are used to pretrain the models only later to be finetuned on downstream tasks. One of the problems of the pretraining approaches is the inconsistent usage of pretraining data with different OCR engines leading to incomparable results between models. In other words, it is not obvious whether the performance gain is coming from diverse usage of amount of data and distinct OCR engines or from the proposed models. To remedy the problem, we make public the OCR annotations for IDL documents using commercial OCR engine given their superior performance over open source OCR models. It is our hope that OCR-IDL can be a starting point for future works on Document Intelligence. All of our data and its collection process with the annotations can be found in https://github.com/furkanbiten/idl_data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aberdam, A., et al.: Sequence-to-sequence contrastive learning for text recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15302–15312 (2021)
Appalaraju, S., Jasani, B., Kota, B.U., Xie, Y., Manmatha, R.: Docformer: end-to-end transformer for document understanding. arXiv preprint arXiv:2106.11539 (2021)
Arroyo, D.M., Postels, J., Tombari, F.: Variational transformer networks for layout generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13642–13652 (2021)
Biswas, S., Banerjee, A., Lladós, J., Pal, U.: DocEnTr: an end-to-end document image enhancement transformer. arXiv preprint arXiv:2201.11438 (2022)
Biswas, S., Riba, P., Lladós, J., Pal, U.: Beyond document object detection: instance-level segmentation of complex layouts. Int. J. Doc. Anal. Recogn. (IJDAR) 24(3), 269–281 (2021). https://doi.org/10.1007/s10032-021-00380-6
Biswas, S., Riba, P., Lladós, J., Pal, U.: DocSynth: a layout guided approach for controllable document image synthesis. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12823, pp. 555–568. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86334-0_36
Biten, A.F., Litman, R., Xie, Y., Appalaraju, S., Manmatha, R.: LaTr: layout-aware transformer for scene-text VQA. arXiv preprint arXiv:2112.12494 (2021)
Biten, A.F., et al.: ICDAR 2019 competition on scene text visual question answering. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1563–1570. IEEE (2019)
Biten, A.F., et al.: Scene text visual question answering. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4291–4301 (2019)
Carbonell, M., Riba, P., Villegas, M., Fornés, A., Lladós, J.: Named entity recognition and relation extraction with graph neural networks in semi structured documents. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 9622–9627. IEEE (2021)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Fang, S., Xie, H., Wang, Y., Mao, Z., Zhang, Y.: Read like humans: autonomous, bidirectional and iterative language modeling for scene text recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7098–7107 (2021)
Gómez, L., et al.: Multimodal grid features and cell pointers for scene text visual question answering. Pattern Recogn. Lett. 150, 242–249 (2021)
Gu, J., et al.: UniDoc: unified pretraining framework for document understanding. In: Advances in Neural Information Processing Systems 34 (2021)
Ha, J., Haralick, R.M., Phillips, I.T.: Document page decomposition by the bounding-box project. In: Proceedings of 3rd International Conference on Document Analysis and Recognition, vol. 2, pp. 1119–1122. IEEE (1995)
Ha, J., Haralick, R.M., Phillips, I.T.: Recursive X-Y cut using bounding boxes of connected components. In: Proceedings of 3rd International Conference on Document Analysis and Recognition, vol. 2, pp. 952–955. IEEE (1995)
Hao, L., Gao, L., Yi, X., Tang, Z.: A table detection method for pdf documents based on convolutional neural networks. In: 2016 12th IAPR Workshop on Document Analysis Systems (DAS), pp. 287–292. IEEE (2016)
Harley, A.W., Ufkes, A., Derpanis, K.G.: Evaluation of deep convolutional nets for document image classification and retrieval. In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 991–995. IEEE (2015)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
He, Y., et al.: Visual semantics allow for textual reasoning better in scene text recognition. arXiv preprint arXiv:2112.12916 (2021)
Hong, T., Kim, D., Ji, M., Hwang, W., Nam, D., Park, S.: Bros: a pre-trained language model for understanding texts in document (2020)
Jemni, S.K., Souibgui, M.A., Kessentini, Y., Fornés, A.: Enhance to read better: a multi-task adversarial network for handwritten document image enhancement. Pattern Recogn. 123, 108370 (2022)
Joshi, M., Chen, D., Liu, Y., Weld, D.S., Zettlemoyer, L., Levy, O.: SpanBERT: improving pre-training by representing and predicting spans. Trans. Assoc. Comput. Linguist. 8, 64–77 (2020)
Lebourgeois, F., Bublinski, Z., Emptoz, H.: A fast and efficient method for extracting text paragraphs and graphics from unconstrained documents. In: 11th IAPR International Conference on Pattern Recognition, Vol. II. Conference B: Pattern Recognition Methodology and Systems, vol. 1, pp. 272–273. IEEE Computer Society (1992)
Lewis, D., Agam, G., Argamon, S., Frieder, O., Grossman, D., Heard, J.: Building a test collection for complex document information processing. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 665–666 (2006)
Li, M., Xu, Y., Cui, L., Huang, S., Wei, F., Li, Z., Zhou, M.: DocBank: a benchmark dataset for document layout analysis. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 949–960 (2020)
Li, P., et al.: SelfDoc: self-supervised document representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5652–5660 (2021)
Litman, R., Anschel, O., Tsiper, S., Litman, R., Mazor, S., Manmatha, R.: Scatter: selective context attentional scene text recognizer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11962–11972 (2020)
Mafla, A., Dey, S., Biten, A.F., Gomez, L., Karatzas, D.: Fine-grained image classification and retrieval by combining visual and locally pooled textual features. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2950–2959 (2020)
Mafla, A., Dey, S., Biten, A.F., Gomez, L., Karatzas, D.: Multi-modal reasoning graph for scene-text based fine-grained image classification and retrieval. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 4023–4033 (2021)
Mafla, A., Rezende, R.S., Gómez, L., Larlus, D., Karatzas, D.: StacMR: scene-text aware cross-modal retrieval. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2220–2230 (2021)
Mathew, M., Bagal, V., Tito, R., Karatzas, D., Valveny, E., Jawahar, C.: InfographicVQA. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1697–1706 (2022)
Mathew, M., Karatzas, D., Jawahar, C.: DocVQA: a dataset for VQA on document images. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2200–2209 (2021)
Na, B., Kim, Y., Park, S.: Multi-modal text recognition networks: Interactive enhancements between visual and semantic features. arXiv preprint arXiv:2111.15263 (2021)
O’Gorman, L.: The document spectrum for page layout analysis. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1162–1173 (1993)
Patil, A.G., Ben-Eliezer, O., Perel, O., Averbuch-Elor, H.: Read: recursive autoencoders for document layout generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 544–545 (2020)
Powalski, R., Borchmann, Ł, Jurkiewicz, D., Dwojak, T., Pietruszka, M., Pałka, G.: Going full-TILT boogie on document understanding with text-image-layout transformer. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12822, pp. 732–747. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86331-9_47
Prasad, D., Gadpal, A., Kapadni, K., Visave, M., Sultanpure, K.: CascadeTabNet: an approach for end to end table detection and structure recognition from image-based documents. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 572–573 (2020)
Raja, S., Mondal, A., Jawahar, C.V.: Table structure recognition using top-down and bottom-up cues. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12373, pp. 70–86. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58604-1_5
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural. Inf. Process. Syst. 28, 91–99 (2015)
Riba, P., Dutta, A., Goldmann, L., Fornés, A., Ramos, O., Lladós, J.: Table detection in invoice documents by graph neural networks. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 122–127. IEEE (2019)
Schreiber, S., Agne, S., Wolf, I., Dengel, A., Ahmed, S.: DeepDeSRT: deep learning for detection and structure recognition of tables in document images. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp. 1162–1167. IEEE (2017)
Simon, A., Pret, J.C., Johnson, A.P.: A fast algorithm for bottom-up document layout analysis. IEEE Trans. Pattern Anal. Mach. Intell. 19(3), 273–277 (1997)
Singh, A., et al..: Towards VQA models that can read. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8317–8326 (2019)
Smith, R.: An overview of the tesseract OCR engine. In: Ninth International Conference on Document Analysis and Recognition (ICDAR 2007), vol. 2, pp. 629–633. IEEE (2007)
Soto, C., Yoo, S.: Visual detection with context for document layout analysis. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3464–3470 (2019)
Souibgui, M.A., et al.: DocEnTr: an end-to-end document image enhancement transformer. arXiv preprint arXiv:2201.10252 (2022)
Souibgui, M.A., et al.: One-shot compositional data generation for low resource handwritten text recognition. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 935–943 (2022)
Souibgui, M.A., Kessentini, Y.: De-GAN: a conditional generative adversarial network for document enhancement. IEEE Transactions on Pattern Analysis and Machine Intelligence (2020)
Tito, R., Karatzas, D., Valveny, E.: Document collection visual question answering. arXiv preprint arXiv:2104.14336 (2021)
Tito, R., Mathew, M., Jawahar, C.V., Valveny, E., Karatzas, D.: ICDAR 2021 competition on document visual question answering. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12824, pp. 635–649. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86337-1_42
Vaswani, A., et al.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
Xu, Y., et al.: LayoutLMv2: multi-modal pre-training for visually-rich document understanding. arXiv preprint arXiv:2012.14740 (2020)
Xu, Y., Li, M., Cui, L., Huang, S., Wei, F., Zhou, M.: LayoutLM: pre-training of text and layout for document image understanding. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1192–1200 (2020)
Zhong, X., ShafieiBavani, E., Jimeno Yepes, A.: Image-based table recognition: data, model, and evaluation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 564–580. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_34
Zhong, X., Tang, J., Yepes, A.J.: PubLayNet: largest dataset ever for document layout analysis. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1015–1022. IEEE (2019)
Acknowledgments
This work has been supported by projects PDC2021-121512-I00, PLEC2021-00785, PID2020-116298GB-I00, ACE034/21/000084, the CERCA Programme / Generalitat de Catalunya, AGAUR project 2019PROD00090 (BeARS), the Ramon y Cajal RYC2020-030777-I / AEI / 10.13039/501100011033 and PhD scholarship from UAB (B18P0073).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Biten, A.F., Tito, R., Gomez, L., Valveny, E., Karatzas, D. (2023). OCR-IDL: OCR Annotations for Industry Document Library Dataset. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13804. Springer, Cham. https://doi.org/10.1007/978-3-031-25069-9_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-25069-9_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25068-2
Online ISBN: 978-3-031-25069-9
eBook Packages: Computer ScienceComputer Science (R0)