Skip to main content

OCR-IDL: OCR Annotations for Industry Document Library Dataset

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13804))

Included in the following conference series:

  • 1624 Accesses

Abstract

Pretraining has proven successful in Document Intelligence tasks where deluge of documents are used to pretrain the models only later to be finetuned on downstream tasks. One of the problems of the pretraining approaches is the inconsistent usage of pretraining data with different OCR engines leading to incomparable results between models. In other words, it is not obvious whether the performance gain is coming from diverse usage of amount of data and distinct OCR engines or from the proposed models. To remedy the problem, we make public the OCR annotations for IDL documents using commercial OCR engine given their superior performance over open source OCR models. It is our hope that OCR-IDL can be a starting point for future works on Document Intelligence. All of our data and its collection process with the annotations can be found in https://github.com/furkanbiten/idl_data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://aws.amazon.com/textract/.

  2. 2.

    https://www.industrydocuments.ucsf.edu.

  3. 3.

    https://en.wikipedia.org/wiki/Industry_Documents_Library.

  4. 4.

    https://s3-us-west-2.amazonaws.com/edu.ucsf.industrydocuments.artifacts/.

References

  1. Aberdam, A., et al.: Sequence-to-sequence contrastive learning for text recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15302–15312 (2021)

    Google Scholar 

  2. Appalaraju, S., Jasani, B., Kota, B.U., Xie, Y., Manmatha, R.: Docformer: end-to-end transformer for document understanding. arXiv preprint arXiv:2106.11539 (2021)

  3. Arroyo, D.M., Postels, J., Tombari, F.: Variational transformer networks for layout generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13642–13652 (2021)

    Google Scholar 

  4. Biswas, S., Banerjee, A., Lladós, J., Pal, U.: DocEnTr: an end-to-end document image enhancement transformer. arXiv preprint arXiv:2201.11438 (2022)

  5. Biswas, S., Riba, P., Lladós, J., Pal, U.: Beyond document object detection: instance-level segmentation of complex layouts. Int. J. Doc. Anal. Recogn. (IJDAR) 24(3), 269–281 (2021). https://doi.org/10.1007/s10032-021-00380-6

    Article  Google Scholar 

  6. Biswas, S., Riba, P., Lladós, J., Pal, U.: DocSynth: a layout guided approach for controllable document image synthesis. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12823, pp. 555–568. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86334-0_36

    Chapter  Google Scholar 

  7. Biten, A.F., Litman, R., Xie, Y., Appalaraju, S., Manmatha, R.: LaTr: layout-aware transformer for scene-text VQA. arXiv preprint arXiv:2112.12494 (2021)

  8. Biten, A.F., et al.: ICDAR 2019 competition on scene text visual question answering. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1563–1570. IEEE (2019)

    Google Scholar 

  9. Biten, A.F., et al.: Scene text visual question answering. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4291–4301 (2019)

    Google Scholar 

  10. Carbonell, M., Riba, P., Villegas, M., Fornés, A., Lladós, J.: Named entity recognition and relation extraction with graph neural networks in semi structured documents. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 9622–9627. IEEE (2021)

    Google Scholar 

  11. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  12. Fang, S., Xie, H., Wang, Y., Mao, Z., Zhang, Y.: Read like humans: autonomous, bidirectional and iterative language modeling for scene text recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7098–7107 (2021)

    Google Scholar 

  13. Gómez, L., et al.: Multimodal grid features and cell pointers for scene text visual question answering. Pattern Recogn. Lett. 150, 242–249 (2021)

    Article  Google Scholar 

  14. Gu, J., et al.: UniDoc: unified pretraining framework for document understanding. In: Advances in Neural Information Processing Systems 34 (2021)

    Google Scholar 

  15. Ha, J., Haralick, R.M., Phillips, I.T.: Document page decomposition by the bounding-box project. In: Proceedings of 3rd International Conference on Document Analysis and Recognition, vol. 2, pp. 1119–1122. IEEE (1995)

    Google Scholar 

  16. Ha, J., Haralick, R.M., Phillips, I.T.: Recursive X-Y cut using bounding boxes of connected components. In: Proceedings of 3rd International Conference on Document Analysis and Recognition, vol. 2, pp. 952–955. IEEE (1995)

    Google Scholar 

  17. Hao, L., Gao, L., Yi, X., Tang, Z.: A table detection method for pdf documents based on convolutional neural networks. In: 2016 12th IAPR Workshop on Document Analysis Systems (DAS), pp. 287–292. IEEE (2016)

    Google Scholar 

  18. Harley, A.W., Ufkes, A., Derpanis, K.G.: Evaluation of deep convolutional nets for document image classification and retrieval. In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 991–995. IEEE (2015)

    Google Scholar 

  19. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  20. He, Y., et al.: Visual semantics allow for textual reasoning better in scene text recognition. arXiv preprint arXiv:2112.12916 (2021)

  21. Hong, T., Kim, D., Ji, M., Hwang, W., Nam, D., Park, S.: Bros: a pre-trained language model for understanding texts in document (2020)

    Google Scholar 

  22. Jemni, S.K., Souibgui, M.A., Kessentini, Y., Fornés, A.: Enhance to read better: a multi-task adversarial network for handwritten document image enhancement. Pattern Recogn. 123, 108370 (2022)

    Article  Google Scholar 

  23. Joshi, M., Chen, D., Liu, Y., Weld, D.S., Zettlemoyer, L., Levy, O.: SpanBERT: improving pre-training by representing and predicting spans. Trans. Assoc. Comput. Linguist. 8, 64–77 (2020)

    Article  Google Scholar 

  24. Lebourgeois, F., Bublinski, Z., Emptoz, H.: A fast and efficient method for extracting text paragraphs and graphics from unconstrained documents. In: 11th IAPR International Conference on Pattern Recognition, Vol. II. Conference B: Pattern Recognition Methodology and Systems, vol. 1, pp. 272–273. IEEE Computer Society (1992)

    Google Scholar 

  25. Lewis, D., Agam, G., Argamon, S., Frieder, O., Grossman, D., Heard, J.: Building a test collection for complex document information processing. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 665–666 (2006)

    Google Scholar 

  26. Li, M., Xu, Y., Cui, L., Huang, S., Wei, F., Li, Z., Zhou, M.: DocBank: a benchmark dataset for document layout analysis. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 949–960 (2020)

    Google Scholar 

  27. Li, P., et al.: SelfDoc: self-supervised document representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5652–5660 (2021)

    Google Scholar 

  28. Litman, R., Anschel, O., Tsiper, S., Litman, R., Mazor, S., Manmatha, R.: Scatter: selective context attentional scene text recognizer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11962–11972 (2020)

    Google Scholar 

  29. Mafla, A., Dey, S., Biten, A.F., Gomez, L., Karatzas, D.: Fine-grained image classification and retrieval by combining visual and locally pooled textual features. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2950–2959 (2020)

    Google Scholar 

  30. Mafla, A., Dey, S., Biten, A.F., Gomez, L., Karatzas, D.: Multi-modal reasoning graph for scene-text based fine-grained image classification and retrieval. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 4023–4033 (2021)

    Google Scholar 

  31. Mafla, A., Rezende, R.S., Gómez, L., Larlus, D., Karatzas, D.: StacMR: scene-text aware cross-modal retrieval. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2220–2230 (2021)

    Google Scholar 

  32. Mathew, M., Bagal, V., Tito, R., Karatzas, D., Valveny, E., Jawahar, C.: InfographicVQA. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1697–1706 (2022)

    Google Scholar 

  33. Mathew, M., Karatzas, D., Jawahar, C.: DocVQA: a dataset for VQA on document images. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2200–2209 (2021)

    Google Scholar 

  34. Na, B., Kim, Y., Park, S.: Multi-modal text recognition networks: Interactive enhancements between visual and semantic features. arXiv preprint arXiv:2111.15263 (2021)

  35. O’Gorman, L.: The document spectrum for page layout analysis. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1162–1173 (1993)

    Article  Google Scholar 

  36. Patil, A.G., Ben-Eliezer, O., Perel, O., Averbuch-Elor, H.: Read: recursive autoencoders for document layout generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 544–545 (2020)

    Google Scholar 

  37. Powalski, R., Borchmann, Ł, Jurkiewicz, D., Dwojak, T., Pietruszka, M., Pałka, G.: Going full-TILT boogie on document understanding with text-image-layout transformer. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12822, pp. 732–747. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86331-9_47

    Chapter  Google Scholar 

  38. Prasad, D., Gadpal, A., Kapadni, K., Visave, M., Sultanpure, K.: CascadeTabNet: an approach for end to end table detection and structure recognition from image-based documents. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 572–573 (2020)

    Google Scholar 

  39. Raja, S., Mondal, A., Jawahar, C.V.: Table structure recognition using top-down and bottom-up cues. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12373, pp. 70–86. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58604-1_5

    Chapter  Google Scholar 

  40. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural. Inf. Process. Syst. 28, 91–99 (2015)

    Google Scholar 

  41. Riba, P., Dutta, A., Goldmann, L., Fornés, A., Ramos, O., Lladós, J.: Table detection in invoice documents by graph neural networks. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 122–127. IEEE (2019)

    Google Scholar 

  42. Schreiber, S., Agne, S., Wolf, I., Dengel, A., Ahmed, S.: DeepDeSRT: deep learning for detection and structure recognition of tables in document images. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp. 1162–1167. IEEE (2017)

    Google Scholar 

  43. Simon, A., Pret, J.C., Johnson, A.P.: A fast algorithm for bottom-up document layout analysis. IEEE Trans. Pattern Anal. Mach. Intell. 19(3), 273–277 (1997)

    Article  Google Scholar 

  44. Singh, A., et al..: Towards VQA models that can read. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8317–8326 (2019)

    Google Scholar 

  45. Smith, R.: An overview of the tesseract OCR engine. In: Ninth International Conference on Document Analysis and Recognition (ICDAR 2007), vol. 2, pp. 629–633. IEEE (2007)

    Google Scholar 

  46. Soto, C., Yoo, S.: Visual detection with context for document layout analysis. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3464–3470 (2019)

    Google Scholar 

  47. Souibgui, M.A., et al.: DocEnTr: an end-to-end document image enhancement transformer. arXiv preprint arXiv:2201.10252 (2022)

  48. Souibgui, M.A., et al.: One-shot compositional data generation for low resource handwritten text recognition. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 935–943 (2022)

    Google Scholar 

  49. Souibgui, M.A., Kessentini, Y.: De-GAN: a conditional generative adversarial network for document enhancement. IEEE Transactions on Pattern Analysis and Machine Intelligence (2020)

    Google Scholar 

  50. Tito, R., Karatzas, D., Valveny, E.: Document collection visual question answering. arXiv preprint arXiv:2104.14336 (2021)

  51. Tito, R., Mathew, M., Jawahar, C.V., Valveny, E., Karatzas, D.: ICDAR 2021 competition on document visual question answering. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12824, pp. 635–649. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86337-1_42

    Chapter  Google Scholar 

  52. Vaswani, A., et al.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  53. Xu, Y., et al.: LayoutLMv2: multi-modal pre-training for visually-rich document understanding. arXiv preprint arXiv:2012.14740 (2020)

  54. Xu, Y., Li, M., Cui, L., Huang, S., Wei, F., Zhou, M.: LayoutLM: pre-training of text and layout for document image understanding. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1192–1200 (2020)

    Google Scholar 

  55. Zhong, X., ShafieiBavani, E., Jimeno Yepes, A.: Image-based table recognition: data, model, and evaluation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 564–580. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_34

    Chapter  Google Scholar 

  56. Zhong, X., Tang, J., Yepes, A.J.: PubLayNet: largest dataset ever for document layout analysis. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1015–1022. IEEE (2019)

    Google Scholar 

Download references

Acknowledgments

This work has been supported by projects PDC2021-121512-I00, PLEC2021-00785, PID2020-116298GB-I00, ACE034/21/000084, the CERCA Programme / Generalitat de Catalunya, AGAUR project 2019PROD00090 (BeARS), the Ramon y Cajal RYC2020-030777-I / AEI / 10.13039/501100011033 and PhD scholarship from UAB (B18P0073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Furkan Biten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Biten, A.F., Tito, R., Gomez, L., Valveny, E., Karatzas, D. (2023). OCR-IDL: OCR Annotations for Industry Document Library Dataset. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13804. Springer, Cham. https://doi.org/10.1007/978-3-031-25069-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25069-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25068-2

  • Online ISBN: 978-3-031-25069-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics