Skip to main content

Gait Recognition from Occluded Sequences in Surveillance Sites

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13805))

Included in the following conference series:

Abstract

Gait recognition is a challenging problem in real-world surveillance scenarios where the presence of occlusion causes only fractions of a gait cycle to get captured by the monitoring cameras. The few occlusion handling strategies in gait recognition proposed in recent years fail to perform reliably and robustly in the presence of an incomplete gait cycle. We improve the state-of-the-art by developing novel deep learning-based algorithms to identify the occluded frames in an input sequence and henceforth reconstruct these occluded frames. Specifically, we propose a two-stage pipeline consisting of occlusion detection and reconstruction frameworks, in which occlusion detection is carried out by employing a VGG-16 model, following which an LSTM-based network termed RGait-Net is employed to reconstruct the occluded frames in the sequence. The effectiveness of our method has been evaluated through the reconstruction Dice score as well as through the gait recognition accuracy obtained by computing the Gait Energy Image feature from the reconstructed sequence. Extensive evaluation using public data sets and comparative study with other methods verify the suitability of our approach for potential application in real-life scenarios.

D. Das and A. Agarwal—Contributed equally to the work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alotaibi, M., Mahmood, A.: Improved gait recognition based on specialized deep convolutional neural network. Comput. Vis. Image Underst. 164, 103–110 (2017)

    Article  Google Scholar 

  2. Aly, S.: Partially occluded pedestrian classification using histogram of oriented gradients and local weighted linear Kernel support vector machine. IET Comput. Vision 8(6), 620–628 (2014)

    Article  Google Scholar 

  3. Andriluka, M., Roth, S., Schiele, B.: People-tracking-by-detection and people-detection-by-tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  4. Ariyanto, G., Nixon, M.S.: Model-based 3D gait biometrics. In: Proceedings of the IEEE International Joint Conference on Biometrics, pp. 11–13, October 2011

    Google Scholar 

  5. Babaee, M., Li, L., Rigoll, G.: Gait recognition from incomplete gait cycle. In: Proceedings of the 25th IEEE International Conference on Image Processing, pp. 768–772. IEEE (2018)

    Google Scholar 

  6. Babaee, M., Li, L., Rigoll, G.: Person identification from partial gait cycle using fully convolutional neural networks. Neurocomputing 338, 116–125 (2019)

    Article  Google Scholar 

  7. Battistone, F., Petrosino, A.: TGLSTM: a time based graph deep learning approach to gait recognition. Pattern Recogn. Lett. 126, 132–138 (2019)

    Article  Google Scholar 

  8. Ben, X., Gong, C., Zhang, P., Yan, R., Wu, Q., Meng, W.: Coupled bilinear discriminant projection for cross-view gait recognition. IEEE Trans. Circ. Syst. Video Technol. 30(3), 734–747 (2019)

    Article  Google Scholar 

  9. Bobick, A.F., Johnson, A.Y.: Gait recognition using static, activity-specific parameters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 423–430, December 2001

    Google Scholar 

  10. Carass, A., et al.: Evaluating white matter lesion segmentations with refined SØRensen-Dice analysis. Sci. Rep. 10(1), 1–19 (2020)

    Article  Google Scholar 

  11. Chang, Z., et al.: MAU: a motion-aware unit for video prediction and beyond. In: Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Proceedings of the Advances in Neural Information Processing Systems (2021)

    Google Scholar 

  12. Chao, H., He, Y., Zhang, J., Feng, J.: GaitSet: regarding gait as a set for cross-view gait recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8126–8133 (2019)

    Google Scholar 

  13. Chao, H., Wang, K., He, Y., Zhang, J., Feng, J.: GaitSet: cross-view gait recognition through utilizing gait as a deep set. IEEE Trans. Pattern Anal. Mach. Intell. 44, 3467–3478 (2021)

    Google Scholar 

  14. Chattopadhyay, P., Roy, A., Sural, S., Mukhopadhyay, J.: Pose depth volume extraction from RGB-D streams for frontal gait recognition. J. Vis. Commun. Image Represent. 25(1), 53–63 (2014)

    Article  Google Scholar 

  15. Chattopadhyay, P., Sural, S., Mukherjee, J.: Exploiting pose information for gait recognition from depth streams. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8925, pp. 341–355. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16178-5_24

    Chapter  Google Scholar 

  16. Chattopadhyay, P., Sural, S., Mukherjee, J.: Frontal gait recognition from occluded scenes. Pattern Recogn. Lett. 63, 9–15 (2015)

    Article  Google Scholar 

  17. Chen, C., Liang, J., Zhao, H., Hu, H., Tian, J.: Frame difference energy image for gait recognition with incomplete silhouettes. Pattern Recogn. Lett. 30(11), 977–984 (2009)

    Article  Google Scholar 

  18. Collins, R.T., Gross, R., Shi, J.: Silhouette-based human identification from body shape and gait. In: Proceedings of 5th IEEE International Conference on Automatic Face Gesture Recognition, pp. 366–371. IEEE (2002)

    Google Scholar 

  19. Cunado, D., Nixon, M.S., Carter, J.N.: Using gait as a biometric, via phase-weighted magnitude spectra. In: Proceedings of the 1st International Conference on Audio and Video-Based Biometric Person Authentication, pp. 93–102, March 1997

    Google Scholar 

  20. Cunado, D., Nixon, M.S., Carter, J.N.: Automatic extraction and description of human gait models for recognition purposes. Comput. Vis. Image Underst. 90(1), 1–41 (2003)

    Article  Google Scholar 

  21. Fan, C., et al.: GaitPart: temporal part-based model for gait recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14225–14233 (2020)

    Google Scholar 

  22. Guen, V.L., Thome, N.: Disentangling physical dynamics from unknown factors for unsupervised video prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11474–11484 (2020)

    Google Scholar 

  23. Gupta, S.K., Chattopadhyay, P.: Gait recognition in the presence of co-variate conditions. Neurocomputing 454, 76–87 (2021)

    Article  Google Scholar 

  24. Han, F., Li, X., Zhao, J., Shen, F.: A unified perspective of classification-based loss and distance-based loss for cross-view gait recognition. Pattern Recogn. 125, 108519 (2022)

    Article  Google Scholar 

  25. Han, J., Bhanu, B.: Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 316–322 (2005)

    Article  Google Scholar 

  26. He, Y., Zhang, J., Shan, H., Wang, L.: Multi-task GANs for view-specific feature learning in gait recognition. IEEE Trans. Inf. Forensics Secur. 14(1), 102–113 (2018)

    Article  Google Scholar 

  27. Hofmann, M., Sural, S., Rigoll, G.: Gait recognition in the presence of occlusion: a new dataset and baseline algorithm. In: Proceedings of the 19th International Conference on Computer Graphics, Visualization and Computer Vision (2011)

    Google Scholar 

  28. Hofmann, M., Wolf, D., Rigoll, G.: Identification and reconstruction of complete gait cycles for person identification in crowded scenes. In: Proceedings of the International Conference on Computer Vision Theory and Applications (2011)

    Google Scholar 

  29. Hu, H., Li, Y., Zhu, Z., Zhou, G.: CNNAuth: continuous authentication via two-stream convolutional neural networks. In: IEEE International Conference on networking, Architecture and Storage, pp. 1–9. IEEE (2018)

    Google Scholar 

  30. Isa, W.N.M., Alam, M.J., Eswaran, C.: Gait recognition using occluded data. In: Proceedings of the IEEE Asia Pacific Conference on Circuits and Systems, pp. 344–347. IEEE (2010)

    Google Scholar 

  31. Lee, L., Grimson, W.E.L.: Gait Analysis for Recognition and Classification. In: Proceedings of the 5th IEEE International Conference on Automatic Face and Gesture Recognition, pp. 155–162, May 2002

    Google Scholar 

  32. Lee, T.K., Belkhatir, M., Sanei, S.: Coping with full occlusion in fronto-normal gait by using missing data theory. In: Proceedings of the 7th International Conference on Information, Communications and Signal Processing, pp. 1–5. IEEE (2009)

    Google Scholar 

  33. de León, R.D., Sucar, L.E.: Continuous activity recognition with missing data. In: Proceedings of the International Conference on Pattern Recognition: Object Recognition Supported by User Interaction for Service Robots, vol. 1, pp. 439–442. IEEE (2002)

    Google Scholar 

  34. Li, Y., Hu, H., Zhu, Z., Zhou, G.: SCANet: sensor-based continuous authentication with two-stream convolutional neural networks. ACM Trans. Sens. Netw. (TOSN) 16(3), 1–27 (2020)

    Article  Google Scholar 

  35. Roy, A., Chattopadhyay, P., Sural, S., Mukherjee, J., Rigoll, G.: Modelling, synthesis and characterisation of occlusion in videos. IET Comput. Vision 9(6), 821–830 (2015)

    Article  Google Scholar 

  36. Roy, A., Sural, S., Mukherjee, J.: Gait recognition using pose kinematics and pose energy image. Signal Process. 92(3), 780–792 (2012)

    Article  Google Scholar 

  37. Roy, A., Sural, S., Mukherjee, J., Rigoll, G.: Occlusion detection and gait silhouette reconstruction from degraded scenes. SIViP 5(4), 415 (2011)

    Article  Google Scholar 

  38. Shiraga, K., Makihara, Y., Muramatsu, D., Echigo, T., Yagi, Y.: GEINet: view-invariant gait recognition using a convolutional neural network. In: Proceedings of the International Conference on Biometrics, pp. 1–8. IEEE (2016)

    Google Scholar 

  39. Sivapalan, S., Chen, D., Denman, S., Sridharan, S., Fookes, C.: Gait energy volumes and frontal gait recognition using depth images. In: Proceedings of the International Joint Conference on Biometrics, pp. 1–6. IEEE (2011)

    Google Scholar 

  40. Song, X., Huang, Y., Shan, C., Wang, J., Chen, Y.: Distilled light GaitSet: towards scalable gait recognition. Pattern Recogn. Lett. 157, 27–34 (2022)

    Article  Google Scholar 

  41. Takemura, N., Makihara, Y., Muramatsu, D., Echigo, T., Yagi, Y.: On input/output architectures for convolutional neural network-based cross-view gait recognition. IEEE Trans. Circuits Syst. Video Technol. 29(9), 2708–2719 (2017)

    Article  Google Scholar 

  42. Wang, Y., Jiang, L., Yang, M.H., Li, L.J., Long, M., Fei-Fei, L.: Eidetic 3DLSTM: a model for video prediction and beyond. In: Proceedings of the International Conference on Learning Representations (2019)

    Google Scholar 

  43. Weinland, D., Özuysal, M., Fua, P.: Making action recognition robust to occlusions and viewpoint changes. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 635–648. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15558-1_46

    Chapter  Google Scholar 

  44. Xu, D., Yan, S., Tao, D., Lin, S., Zhang, H.J.: Marginal fisher analysis and its variants for human gait recognition and content-based image retrieval. IEEE Trans. Image Process. 16(11), 2811–2821 (2007)

    Article  MathSciNet  Google Scholar 

  45. Yu, S., Chen, H., Garcia Reyes, E.B., Poh, N.: GaitGAN: invariant gait feature extraction using generative adversarial networks. In: Proceedings of the Conference on Computer Vision and Pattern Recognition Workshops, pp. 30–37 (2017)

    Google Scholar 

  46. Yu, S., Tan, D., Tan, T.: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: Proceedings of the 18th International Conference on Pattern Recognition, vol. 4, pp. 441–444. IEEE (2006)

    Google Scholar 

  47. Zhang, E., Zhao, Y., Xiong, W.: Active energy image plus 2DLPP for gait recognition. Signal Process. 90(7), 2295–2302 (2010)

    Article  MATH  Google Scholar 

  48. Zhang, J., Sun, H., Guan, W., Wang, J., Xie, Y., Shang, B.: Robust human tracking algorithm applied for occlusion handling. In: Proceedings of the 5th International Conference on Frontier of Computer Science and Technology, pp. 546–551. IEEE (2010)

    Google Scholar 

  49. Zhang, P., Wu, Q., Xu, J.: VT-GAN: view transformation GAN for gait recognition across views. In: Proceedings of the International Joint Conference on Neural Networks, pp. 1–8 (2019)

    Google Scholar 

  50. Zheng, S., Zhang, J., Huang, K., He, R., Tan, T.: Robust view transformation model for gait recognition. In: Proceedings of the 18th IEEE International Conference on Image Processing, pp. 2073–2076. IEEE (2011)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank NVIDIA for supporting their work with a TITAN Xp GPU. The authors also acknowledge KLA Corporation for assisting them in attending the conference with an international travel grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratik Chattopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Das, D., Agarwal, A., Chattopadhyay, P. (2023). Gait Recognition from Occluded Sequences in Surveillance Sites. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13805. Springer, Cham. https://doi.org/10.1007/978-3-031-25072-9_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25072-9_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25071-2

  • Online ISBN: 978-3-031-25072-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics