Skip to main content

ChaLearn LAP Seasons in Drift Challenge: Dataset, Design and Results

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Abstract

In thermal video security monitoring the reliability of deployed systems rely on having varied training data that can effectively generalize and have consistent performance in the deployed context. However, for security monitoring of an outdoor environment the amount of variation introduced to the imaging system would require extensive annotated data to fully cover for training and evaluation. To this end we designed and ran a challenge to stimulate research towards alleviating the impact of concept drift on object detection performance. We used an extension of the Long-Term Thermal Imaging Dataset, composed of thermal data acquired from 14th May 2020 to 30th of April 2021, with a total of 1689 2-min clips with bounding-box annotations for 4 different categories. The data covers a wide range of different weather conditions and object densities with the goal of measuring the thermal drift over time, from the coldest day/week/month of the dataset. The challenge attracted 184 registered participants, which was considered a success from the perspective of the organizers. While participants managed to achieve higher mAP when compared to a baseline, concept drift remains a strongly impactful factor. This work describes the challenge design, the adopted dataset and obtained results, as well as discuss top-winning solutions and future directions on the topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Challenge - https://chalearnlap.cvc.uab.cat/challenge/51/description/.

  2. 2.

    Track 1 (on Codalab) - https://codalab.lisn.upsaclay.fr/competitions/4272.

  3. 3.

    Track 2 (on Codalab) - https://codalab.lisn.upsaclay.fr/competitions/4273.

  4. 4.

    Track 3 (on Codalab) - https://codalab.lisn.upsaclay.fr/competitions/4276.

  5. 5.

    https://cocodataset.org/#detection-eval.

  6. 6.

    https://github.com/cocodataset/cocoapi.

  7. 7.

    https://github.com/ultralytics/yolov5.

  8. 8.

    Codalab - https://codalab.lisn.upsaclay.fr.

References

  1. Bochkovskiy, A., Wang, C., Liao, H.M.: Yolov4: optimal speed and accuracy of object detection. CoRR abs/2004.10934 (2020)

    Google Scholar 

  2. Bodla, N., Singh, B., Chellappa, R., Davis, L.S.: Soft-NMS - improving object detection with one line of code. In: ICCV (2017)

    Google Scholar 

  3. Buslaev, A.V., Iglovikov, V.I., Khvedchenya, E., Parinov, A., Druzhinin, M., Kalinin, A.A.: Albumentations: fast and flexible image augmentations. Information 11(2), 125 (2020)

    Article  Google Scholar 

  4. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: CVPR (2018)

    Google Scholar 

  5. Chen, K., et al.: MMDetection: open MMLab detection toolbox and benchmark. CoRR abs/1906.07155 (2019)

    Google Scholar 

  6. Chen, Y.Y., Jhong, S.Y., Li, G.Y., Chen, P.H.: Thermal-based pedestrian detection using faster r-cnn and region decomposition branch. In: ISPACS (2019)

    Google Scholar 

  7. Dai, D., Van Gool, L.: Dark model adaptation: semantic image segmentation from daytime to nighttime. In: ITSC (2018)

    Google Scholar 

  8. Dai, X., Yuan, X., Wei, X.: Tirnet: object detection in thermal infrared images for autonomous driving. Appl. Intell. 51(3), 1244–1261 (2021)

    Article  Google Scholar 

  9. Davis, J.W., Keck, M.A.: A two-stage template approach to person detection in thermal imagery. In: WACV-W (2005)

    Google Scholar 

  10. Devaguptapu, C., Akolekar, N., M Sharma, M., N Balasubramanian, V.: Borrow from anywhere: pseudo multi-modal object detection in thermal imagery. In: CVPR-W (2019)

    Google Scholar 

  11. Ghiasi, G., et al.: Simple Copy-Paste is a strong data augmentation method for instance segmentation. In: CVPR (2021)

    Google Scholar 

  12. Han, W., et al.: Seq-NMS for video object detection. CoRR abs/1602.08465 (2016)

    Google Scholar 

  13. Hwang, S., Park, J., Kim, N., Choi, Y., So Kweon, I.: Multispectral pedestrian detection: benchmark dataset and baseline. In: CVPR (2015)

    Google Scholar 

  14. Jia, X., Zhu, C., Li, M., Tang, W., Zhou, W.: Llvip: a visible-infrared paired dataset for low-light vision. In: ICCV (2021)

    Google Scholar 

  15. Kieu, M., Bagdanov, A.D., Bertini, M., del Bimbo, A.: Task-conditioned domain adaptation for pedestrian detection in thermal imagery. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 546–562. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_33

    Chapter  Google Scholar 

  16. Kim, J., Kim, H., Kim, T., Kim, N., Choi, Y.: Mlpd: multi-label pedestrian detector in multispectral domain. Rob. Autom. Lett. 6(4), 7846–7853 (2021)

    Article  Google Scholar 

  17. Krišto, M., Ivasic-Kos, M., Pobar, M.: Thermal object detection in difficult weather conditions using yolo. IEEE Access 8, 125459–125476 (2020)

    Article  Google Scholar 

  18. Liang, T., et al.: Cbnetv2: a composite backbone network architecture for object detection. CoRR abs/2107.00420 (2021)

    Google Scholar 

  19. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  20. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV (2021)

    Google Scholar 

  21. Nikolov, I., et al.: Seasons in drift: a long-term thermal imaging dataset for studying concept drift. In: NeurIPS (2021)

    Google Scholar 

  22. Pavao, A., et al.: CodaLab Competitions: An open source platform to organize scientific challenges. Ph.D. thesis, Université Paris-Saclay, FRA (2022)

    Google Scholar 

  23. Siris, A., Jiao, J., Tam, G.K., Xie, X., Lau, R.W.: Scene context-aware salient object detection. In: ICCV (2021)

    Google Scholar 

  24. Telodyne: FLIR AADAS Dataset. https://www.flir.com/oem/adas/adas-dataset-form/

  25. Vertens, J., Zürn, J., Burgard, W.: Heatnet: bridging the day-night domain gap in semantic segmentation with thermal images. In: IROS (2020)

    Google Scholar 

  26. Wang, C., Bochkovskiy, A., Liao, H.: Scaled-YOLOv4: scaling cross stage partial network. In: CVPR (2021)

    Google Scholar 

  27. Wortsman, M., et al.: Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time. CoRR abs/2203.05482 (2022)

    Google Scholar 

  28. Wu, X., Wu, Z., Guo, H., Ju, L., Wang, S.: Dannet: a one-stage domain adaptation network for unsupervised nighttime semantic segmentation. In: CVPR (2021)

    Google Scholar 

  29. Zhang, H., Fromont, E., Lefevre, S., Avignon, B.: Multispectral fusion for object detection with cyclic fuse-and-refine blocks. In: ICIP (2020)

    Google Scholar 

  30. Zhang, H., Fromont, E., Lefèvre, S., Avignon, B.: Guided attentive feature fusion for multispectral pedestrian detection. In: WACV (2021)

    Google Scholar 

  31. Zhang, H., Cissé, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. CoRR abs/1710.09412 (2017)

    Google Scholar 

Download references

Acknowledgements

This work has been partially supported by Milestone Research Program at AAU, the Spanish project PID2019-105093GB-I00 and by ICREA under the ICREA Academia programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Skaarup Johansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Johansen, A.S., Junior, J.C.S.J., Nasrollahi, K., Escalera, S., Moeslund, T.B. (2023). ChaLearn LAP Seasons in Drift Challenge: Dataset, Design and Results. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13805. Springer, Cham. https://doi.org/10.1007/978-3-031-25072-9_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25072-9_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25071-2

  • Online ISBN: 978-3-031-25072-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics