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Abstract. Assistive robots can significantly reduce the burden of daily
activities by providing services such as unfolding clothes and assistive
dressing. For robotic clothes manipulation tasks, grasping point recogni-
tion is one of the core steps, which is usually achieved by supervised deep
learning methods using large amounts of labeled training data. Given
that collecting real labeled data is extremely labor-intensive and time-
consuming in this filed, synthetic data generated by physics engines is
typically adopted for data enrichment. However, there exists an inherent
discrepancy between real and synthetic domains. Therefore, effectively
leveraging synthetic data together with real data to jointly train models
for grasping point recognition is desirable. In this paper, we propose a
Cross-Domain Representation Learning (CDRL) framework that adap-
tively extracts domain-specific features from synthetic and real domain
respectively, before further fusing these domain-specific features to pro-
duce more informative and robust cross-domain representations, thereby
improving the prediction accuracy of the grasping points an assistive
robot must take advantage of. Experimental results show that our CDRL
framework is capable of recognizing grasping points more precisely than
when compared with five baseline methods. Based on our CDRL frame-
work, we enable a Baxter humanoid robot to unfold a hanging white coat
with a 92% success rate and to successfully assist 6 users in dressing.

Keywords: Clothes unfolding · Grasping point recognition · Robot-
assisted dressing · Human-robot interaction

1 Introduction

In our daily life, dressing is an important activity in which many people need
assistance due to disabilities or impairments. [17]. Assistive robots can help with
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Fig. 1: The Baxter humanoid robot automatically recognizes the hanging clothes’
grasping points and then unfolds the clothes to a wearable state so as to assist
users with dressing. The grasping points of the clothes are recognized by our
proposed Cross-Domain Representation Learning framework.

reducing the burden of dressing. In recent years, interest has increased in the
challenge of robot-assisted dressing [22,10,11,23,9,27,12], they attempt to alle-
viate the dressing burden via diverse techniques. However, these works mainly
focus on the process of dressing and simplify the initial configuration, which usu-
ally leads to assumption that the clothes has already been grasped by a robot.

Considering the clothes are often in a hanging state before the dressing starts,
a robot should unfold them to wearable states. In robotic clothes unfolding re-
search, the precise recognition of grasping points is fundamental to the perfor-
mance. Earlier work focused on the use of a random forest algorithm [8] or a
clothes template matching method [19] to recognize the clothes’ grasping points.
With the emergence of deep learning, researchers [5,25,27] utilized Convolutional
Neural Networks (CNN) to learn the Cartesian coordinates of grasping points
from large-scale labeled data. The performance of deep learning relies heavily
on large-scale labeled data, but in the field of robotics, the real labeled data ac-
quisition is extremely time-consuming and labor-intensive. Therefore, employing
physics engines to generate synthetic images to augment training datasets has be-
come a widely-adopted paradigm in robotic clothes unfolding tasks [5,26,25,27].



CDRL 3

However, due to the inherent discrepancy between the real and synthetic do-
mains, it can be observed that directly applying synthetic images in the training
process only improves the model’s performance slightly [27].

In this paper, we present a Cross-Domain Representation Learning (CDRL)
framework that sufficiently extracts knowledge from both synthetic and real
domain to produce more robust cross-domain generalized representations. The
CDRL network consists of two main modules. A Domain-specific Feature Re-
finement Module adopts ResNet-101 [14] as a backbone to extract vanilla image
features which are domain-irrelevant, then the features are adaptively refined
by two domain-aware deformable convolutional [7] branches to produce domain-
specific knowledge. A Cross-Domain Representation Fusion Module fuses the
features of two domain branches to acquire cross-domain representation, this
integrates the domain-specific knowledge to improve the model accuracy.

Extensive experiments demonstrate that the proposed CDRL framework sig-
nificantly outperforms other baseline methods [25,21,5,27] in terms of clothes
grasping point recognition (three for single domain methods, two for mixed do-
mains methods). Moreover, we also achieve a 92% robotic clothes unfolding
success rate in a real lab environment and enable a Baxter robot to successfully
assist 6 real users with dressing.

The main contributions of this paper can be summarized as follows:

– We examine the robotic clothes unfolding task from the perspective of cross-
domain representation learning for the first time, aiming to effectively lever-
age the synthetic data that is easily accessible.

– We propose a Cross-Domain Representation Learning (CDRL) framework
for the recognition of clothes’ grasping points which can fully extract cross-
domain representations through both synthetic and real domain data, and
improve the grasping point recognition accuracy.

– Empirical results demonstrate that the proposed CDRL framework can ac-
curately recognize grasping points. We further enable a Baxter robot to
bimanually unfold the hanging clothes to a wearable state and assist users
with dressing.

2 Related Work

2.1 Robotic Clothes Unfolding

In robotic clothes unfolding tasks, precise grasping point recognition is crucial to
the clothes unfolding performance. Earlier studies used manual feature extrac-
tion methods for detecting the clothes, such as shapes [6], volumes [20], edges
and corners [15] to determine where to grasp. Doumanoglou et al. built random
forests based on a clothes depth image dataset that was manually taken and la-
belled, which was a very expensive and time-consuming approach to implement
in practice [8]. Kita et al. proposed a model-driven approach, which used a 3D
clothes model to identify the state of the real clothes by matching templates
predefined in the generated simulated clothes database [16].
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Currently, researchers typically use Convolutional Neural Networks (CNN)
for grasping point recognition in robotic clothes unfolding tasks [5,25,27]. How-
ever, deep learning models rely on large-scale, high-quality labeled data to exploit
efficient feature representation capacity [18]. In many works, especially in the
field of robotics, the acquisition of real labeled training data is time-consuming
and arduous. Synthetic data generated from physics engines, due to its ease of
acquisition and labeling properties, has been used as a means of data augmenta-
tion in robotics research, including visual space recognition [26] and navigation
[24]. In robotic clothes-related tasks, researchers use synthetic data generated
by physics engines and leverage CNN models to learn Cartesian coordinates of a
grasping point from large-scale labeled data. Corona et al. [5] and Saxena et al.
[25] augment the real dataset with synthetic data and proposed multi-layer con-
volutional networks to predict the grasping point coordinates. Similarly, Zhang
et al. used the AlexNet model to regress single point coordinates from a syn-
thetic and real domain clothes dataset, which enabled the robot to successfully
grasp a single clothes point and put one sleeve onto the user arm [27].

These aforementioned works have made advances in clothes grasping point
recognition, but the natural domain discrepancy between the synthetic and real
domain makes them unable to adequately extract cross-domain generalized rep-
resentations, thus undermining the model’s performance.

2.2 Robot-assisted Dressing

Providing dressing assistance remains an important but challenging problem for
robots. Recently, there have been a growing number of research on robot-assisted
dressing. Reinforcement learning algorithms [22,3] and demonstration learning
methods [2,23] are adopted to teach the robot to learn the dressing motions. In
user modeling aspects, user preference has been considered to enable the robot
to personalize the dressing assistance for users who suffer from disabilities or
impairments [10]. On the other hand, multi-modal information integration allows
the robot to perceive users more precisely, thus making the dressing process
more efficient and reliable [9]. However, the above research mostly focused on
the dressing process, which usually assumed that the clothes had already been
grasped by a robot in the configuration setup. In this work, we consider the step
of robotic clothes unfolding before the robot-assisted dressing process.

3 Cross-Domain Representation Learning

In this paper, we propose a Cross-Domain Representation Learning (CDRL)
framework which adaptively extracts domain-specific features from synthetic
and real domain and then fuses the features to yield cross-domain representa-
tions. The overall pipeline of the CDRL framework is illustrated in Fig. 2, which
consists of a Domain-specific Feature Refinement Module and a Cross-Domain
Feature Fusion Module. In the training phase, the CDRL takes a labeled depth
image dataset as input which includes both synthetic images and real images.
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Fig. 2: Overall pipeline of the proposed Cross-Domain Representation Learning
(CDRL) framework. This framework takes a depth images dataset (drawing from
both the synthetic and real domain) as input in the training phase. The CDRL
framework consists of two main modules, a Domain-specific Feature Refinement
module which includes a backbone feature extractor Φ to extract basic features
F , and then the features Fr, Fs tagged with their corresponding domains are
fed into the domain-aware deformation convolutional branches to adaptively
refine and attain domain-specific representations Fr,Fs, where the superscripts
{r, s} represent the feature from the real and synthetic domain respectively.
The Cross-Domain Representation Fusion Module integrates the two domain-
specific features and attains cross-domain representations. The Fully-connected
(FC) layer transforms the fused representations to the grasping point coordinate
outputs. Best viewed in color.

The clothes depth image dataset acquisition and labeling will be described in
section 4. We now introduce the two components of CDRL in detail.

Domain-specific Feature Refinement Module Clothes are typically
non-rigid objects with complex surface deformations, which are intractable in
clothes grasping point recognition. However, the traditional convolution opera-
tion adopts a fixed structure that is insufficient for modeling the highly complex
nature of deformable clothes. As a result, we leverage the Deformable Convolu-
tional Network (DCN) [28] for adaptively extracting domain-specific represen-
tations due to its remarkable transformation modeling capacity.

In particular, given a synthetic or real depth image of clothes, we first employ
the pretrained ResNet-101 [14] as the backbone denoted as Φ to extract vanilla
features F , which are domain-irrelevant. Then, the features F are fed into the
domain-aware deformable convolution branches, in which the sampling location
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weight w(p), offset ∆p and modulation scalar ∆m are the parameters that need
to be learned. These parameters are computed as follows:

∆pd = OffsetGenerator(Fd),

∆md = MaskGenerator(Fd),
(1)

where d = {r, s} denotes the real or synthetic domains, the OffsetGenerator and
MaskGenerator are the two separate 3 × 3 convolutional structures.

Compared to the fixed traditional convolution operation, in a deformable con-
volution network, the adaptive learnable offset∆p and the modulation scalar∆m
are added. With the sampling location gridK = {(1,−1), (0,−1), ..., (1, 0), (1, 1))},
the output domain-specific feature map y(p) in the deformable convolutional
branches is expressed as:

y(p) =

K∑
k=1

w(pk) · x(p+ pk +∆pk) ·∆mk, (2)

where ∆pk and ∆mk denote the offset and modulation scalar at the k-th lo-
cation in K, respectively. The x (p+ pk +∆pk) is a bilinear interpolation to
prevent sampling offsets from getting fractional values. With the help of these
parameters, the deformable convolutional operation can effectively obtain use-
ful location cues from the vanilla features F and better adapt to the different
target domains’ features, thus generating high-quality domain-specific features.
The above operation can be expressed as:

(Fd, pd,md)
Modulated Deformable−−−−−−−−−−−−−−−−→

Convolution
F d. (3)

Cross-Domain Feature Fusion Module In this module, the domain-
specific features Fr and Fs are concatenated and then passed to several regular
3 × 3 convolutions for aggregation, which produces the cross-domain represen-
tations Fcd. Note that Fcd integrates the knowledge from both the real and
synthetic domains, which is favorable for subsequent grasping point regression.
Ultimately, we employ a fully connected layer to decode the final positions of
grasping points from Fcd.

Loss Function We adopt the mean square error (MSE) to supervise the
learning of final grasping points recognition. The loss function is defined as:

L (θ) = α ·MSE(P1, T1) + (1− α) ·MSE(P2, T2) + βΩ (θ) , (4)

where P1, P2 denote the predicted Cartesian coordinates of the two predicted
grasping points. The MSE calculates the error distance between P1, P2 and
ground truth positions of grasping points T1, T2. The α is a hyperparameter
used to balance the loss item of each predicted grasping point, and the regular-
ization term Ω(θ) is used to alleviate overfitting.
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4 Data Acquisition

In order to train an accurate clothes grasping point recognition model, a sub-
stantial volume of high-quality labeled training data is necessary. Depth maps
are desirable due to their invariance to different colors and textures. In real lab,
it is labor-intensive and time-consuming to collect real depth images and label
the point coordinates, hence we utilize a physics engine Maya [1] to simulate real
lab settings and generate large-scale labeled training data. The acquired real and
synthetic depth image samples of the clothes are shown in Fig. 3.

Real Data: As shown in Fig. 1, in our lab setting, we position a rail in front of
the robot and hang a white coat randomly on the rail, while a Kinect v2 camera
is placed on the left side of the Baxter robot, which is 60 cm down and 100
cm back from the hanging clothes. We gather real depth images by constantly
changing the hanging positions of the white coat with the help of the Kinect
v2 camera. While taking depth images, the spatial Cartesian coordinates of the
grasping points are recorded with a NOKOV Motion Capture System by placing
markers at the collar areas. After repeating the above steps, we obtain a total of
5000 pieces of real labeled data, which takes approximately 50 hours. The non-
clothing segments are filtered from the real images by thresholding the depth
between 80cm and 110cm.

Fig. 3: Samples of real and synthetic depth images. The real depth image (left) is
taken by a Kinect v2 camera and the synthetic depth image (right) is generated
by the Maya physics engine.

Synthetic Data: We use the physics engine Maya [1] to acquire synthetic
clothes images with corresponding grasping points coordinate labels. In Maya,
we simulate the real lab environment and set the same relative positions of
the camera and the white coat model. In the camera parameter setting, we
configure the focal length, horizontal and vertical angle the same as the Kinect
v2 camera. Before the data acquisition, we define a number of hanging points on
the 3D white coat model to simulate the clothes hanging poses on the rail in the
real lab environment. During the acquisition procedure, we simulate the clothes
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hanging poses by applying a simulation of gravity at different hanging points.
Meanwhile, we alter the attributes of the clothes model, such as compression
resistance and bending resistance, to generate diversified data. When the clothes
model is stabilized in the gravity simulation, the camera takes a clothes depth
image and records the Cartesian coordinates of the predefined grasping points at
the collar position. This process is illustrated in Fig. 4. By repeating the above
procedure, a total of 14000 labeled depth images are obtained.

Fig. 4: Maya modeling environment for generating synthetic clothes depth im-
ages. In the predefined settings, the clothes object will possess similar features
of the real lab white coat, before they are subjected to gravity.

5 Experiments and Results

We first validate the performance of the proposed Cross-Domain Representation
Learning (CDRL) framework for clothes grasping point recognition using our
collected dataset. Then, based on the proposed CDRL framework, in a real lab
environment, we enable the Baxter robot to unfold the hanging clothes and assist
users with dressing to further examine the effectiveness of framework.

5.1 Experimental Setup

In lab environment, we set the camera, clothes and Baxter robot to the same as
described in Section 4. The Kinect v2 camera captures depth images for grasping
point recognition implements human joints tracking algorithm during robot-
assisted dressing. The transformation between coordinates has been determined
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prior to the experiment. In the CDRL network, we set the learning rate to 0.001,
batch size 32. The β and α in Eq. 4 are set to 1e− 8 and 0.4, respectively.

All experiments were conducted on a desktop running Ubuntu 16.04 with a
2.20GHz Intel Xeon Gold 5120 processor and an Nvidia Titan RTX GPU, upon
which a ROS operating system and a MoveIt! motion planning library [4] were
used to enable the Baxter robot to unfold the coat and assist the user in dressing.

5.2 Approach Evaluation

We conduct extensive experiments with different training dataset settings to
evaluate the performance of the CDRL framework for grasping point recognition.

We divide the real data into the training set, validation set and test set
with a ratio of 6 : 2 : 2. A total of 14000 synthetic images will be used to
collaboratively train the model with an increasing number of real training images
500 → 1000 → 2000 → 3000. We compare against the following 6 methods:

Single domain methods:

(1) Backbone training with only synthetic data, denoted as Syn only: This
baseline corresponds to the approach [25] using only synthetic data.

(2) Backbone training with only real data, denoted as Real only : This base-
line aims to train the network using only real images as done in [21].

(3) Backbone training only with noisy synthetic data denoted as
Noised Syn only. Since the depth maps captured by a Kinect v2 camera are
noisy, while the synthetic images are very smooth. Therefore, it is desirable to
add simulated noise to synthetic images to make them more similar to the real
images. Practically, the adopted Kinect noise model [13] uses random offsets to
shift pixel locations and adds Gaussian noise, which is corresponded to [5].

Table 1: Single domain methods performance comparisons of (1), (2), (3).

Method Training data number Mean Error Distance ↓

Syn only 14000 5.72 cm
Real only 3000 1.8 cm

Noised Syn only 14000 5.57 cm

Mixed domain methods:

(4) Backbone training on synthetic data with incremental real data 500, 1000,
2000, 3000, denoted as Incre Syn [27].

(5) Backbone training on noisy synthetic data with incremental real data
500, 1000, 2000, 3000, denoted as Incre Noised Syn [27].

(6) Complete CDRL framework training on synthetic data with increasing
real images 500, 1000, 2000, 3000, denoted as CDRL.



10 J. Qie et al.

We verify these methods’ prediction accuracy individually using the Mean
Error Distance, which measures the error distance between each predicted grasp-
ing point and corresponding ground truth coordinates. We provide the results
of experimental configurations (1), (2), and (3) in Table 1. For the experimental
configurations (4), (5), and (6), the corresponding results are depicted in Fig. 5.

Fig. 5: This figure shows the performance results of mixed domain methods. The
Mean Error Distance of the incremental real data learning configurations (4),
(5), and (6) on the testset, from which we can see that our CDRL framework
outperforms the rest.

From the results depicted in Table 1 and Fig. 5, we can observe that:

(1) The Syn onlymodel (configuration (1)) which trained using only synthetic
data has the largest error value (5.72cm). At the same time, the Real only model
(configuration (2)) attains 1.8cm error value, which is approximately 31.8% of
Syn only. This significant performance gap indicates that there is a clear dis-
crepancy between real and synthetic domains, and directly learning knowledge
from the synthetic domain is challenging to transfer to the real domain. On the
other hand, for the Incre Noised Syn (configuration (3)), synthetic training data
attached with simulated noise looks more similar to the real images, thereby
providing a slightly improvement performance over the configuration (1) that
training model using only original synthetic data.

(2) The prediction error of Incre Syn (configuration (4)) gradually decreases
to 2.51cm, 1.95cm, 1.7cm, 1.6cm, with the increasing number of real images
500 → 1000 → 2000 → 3000, as illustrated in Fig. 5. Similar trends can be
found in (Incre Noised Syn (configuration (5)) and CDRL (configuration (6)),
as depicted in Fig. 5. This performance improvement upon the incorporation of
real images shows that real images allow the learned distribution close to the
real domain, which is favorable for model training.
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(3) Remarkably, our proposed CDRL achieves state-of-the-art recognition
performance and delivers a substantial improvement over all baseline meth-
ods, with a final prediction error of 1.4cm. This significant performance demon-
strates the effectiveness of cross-domain representation learning. In the CDRL
framework, through our principled design of the Domain-specific Feature Refine-
ment Module for adaptively extracting domain-specific knowledge and the Cross-
Domain Feature Fusion Module for sufficient feature fusion, this framework can
obtain robust cross-domain representations and produce the best results.

5.3 Robotic Clothes Unfolding and Assistive Dressing

In this section, based on our proposed CDRL framework, we conduct experiments
on a Baxter robot to unfold clothes and assist dressing in a real lab environment.

Robotic Clothes Unfolding Once the clothes grasping points are iden-
tified by the proposed CDRL framework, we conduct the robot motion planning
using the MoveIt! [4] library to grasp them bimanually from the hanging state to
the wearable state. The complete robotic clothes unfolding procedure is shown in
Fig. 6. We perform 50 experiments by constantly changing the clothes gestures
on the rail, and achieve 92% successful rate of clothes unfolding.

Fig. 6: The entire procedure of unfolding clothes by a Baxter robot. Our CDRL
framework calculates the Cartesian coordinate of the clothes grasping points,
then the Baxter robot performs motion planning to grasp and unfold the clothes
to a wearable state. More detailed video demonstrations can be seen in the
supplementary file.

Robot-assisted Dressing With the clothes unfolded by the robot to a
wearable state, we remove the rail and users are allowed to stand in front of the
robot. The user’s arms are held back at a certain angle (30◦) to the body as
the initial gesture. The Kinect v2 camera SDK based on the camera behind the
users will calculate the location of the wrist pwst, elbow pelb and shoulder pshd.
Finally, the Baxter robot plans a motion path passing above these key points
(pwst → pelb → pshd) to assist users to accomplish the dressing process.

We invited six participants (informed consent was obtained) to get dressed
with the help of the Baxter robot. The whole process is illustrated in Fig. 7. The
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Fig. 7: Examples of the Baxter robot performing assistive dressing. After the
robot unfolds the hanging clothes to a wearable state, the Kinect v2 camera
SDK detects the users’ joint positions. Following this, the robot performs motion
planning to assist users in dressing. More detailed video demonstrations can be
seen in the supplementary file.

procedure was performed successfully in most trials, but there exist some failure
cases. For example, when participants wear thick or frictional clothes, the robot
end-effectors’ limited power cannot assist properly and release the clothes.

6 Conclusion

In this paper, we examine the robotic clothes unfolding task from the perspec-
tive of cross-domain representation learning for the first time. We present a
Cross-Domain Representation Learning (CDRL) framework for clothes grasp-
ing point recognition, which adaptively extracts domain-specific features from
both synthetic and real domain, and fuses them to produce more robust clothes
representations. Experimental results demonstrate that our framework can sig-
nificantly reduce the mean error of detected grasping points with the same data
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volume settings. Furthermore, based on our CDRL framework, we enable the
Baxter humanoid robot to unfold the hanging clothes and assist 6 real users in
getting dressed. In our future work, we aim to enable our model to support more
types of clothes as well as more sophisticated grasping strategies to improve the
robot actual performance in real lab experiments.
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