Skip to main content

Robustness of Embodied Point Navigation Agents

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13806))

Included in the following conference series:

  • 1358 Accesses

Abstract

We make a step towards robust embodied AI by analyzing the performance of two successful Habitat Challenge 2021 agents under different visual corruptions (low lighting, blur, noise, etc.) and robot dynamics corruptions (noisy egomotion). The agents had underperformed overall. However, one of the agents managed to handle multiple corruptions with ease, as the authors deliberately tackled robustness in their model. For specific corruptions, we concur with observations from literature that there is still a long way to go to recover the performance loss caused by corruptions, warranting more research on the robustness of embodied AI.

Code available at m43.github.io/projects/embodied-ai-robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/Xiaoming-Zhao/PointNav-VO/.

  2. 2.

    https://eval.ai/web/challenges/challenge-page/254/leaderboard/839.

References

  1. Anderson, P., et al.: On evaluation of embodied navigation agents (2018). https://doi.org/10.48550/arXiv.1807.06757

  2. Anderson, P., et al.: Vision-and-language navigation: Interpreting visually-grounded navigation instructions in real environments. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3674–3683 (2018). https://doi.org/10.1109/CVPR.2018.00387

  3. Armeni, I., et al.: 3d semantic parsing of large-scale indoor spaces. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1534–1543 ( June 2016). https://doi.org/10.1109/CVPR.2016.170

  4. Chang, A., et al.: Matterport3D: Learning from RGB-D data in indoor environments. In: International Conference on 3D Vision (3DV) (2017). https://doi.org/10.1109/3dv.2017.00081

  5. Chattopadhyay, P., Hoffman, J., Mottaghi, R., Kembhavi, A.: Robustnav: Towards benchmarking robustness in embodied navigation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 15691–15700 (October 2021). https://doi.org/10.1109/ICCV48922.2021.01540

  6. Choi, S., Zhou, Q.Y., Koltun, V.: Robust reconstruction of indoor scenes. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5556–5565 (2015). https://doi.org/10.1109/CVPR.2015.7299195

  7. Das, A., Datta, S., Gkioxari, G., Lee, S., Parikh, D., Batra, D.: Embodied question answering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2018). https://doi.org/10.1109/CVPR.2018.00008

  8. Deitke, M., et al.: Robothor: An open simulation-to-real embodied ai platform. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3164–3174 (2020)

    Google Scholar 

  9. Gordon, D., Kembhavi, A., Rastegari, M., Redmon, J., Fox, D., Farhadi, A.: Iqa: Visual question answering in interactive environments. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4089–4098 (2018). https://doi.org/10.1109/CVPR.2018.00430

  10. Habitat Challenge 2019 @ Habitat Embodied Agents Workshop. In: CVPR 2019. https://aihabitat.org/challenge/2019/

  11. Habitat Challenge 2020 @ Embodied AI Workshop. In: CVPR 2020. https://aihabitat.org/challenge/2020/

  12. Habitat Challenge 2021 @ Embodied AI Workshop. In: CVPR 2021. https://aihabitat.org/challenge/2021/

  13. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common corruptions and perturbations (2019). https://doi.org/10.48550/arXiv.1903.12261

  14. Hermann, K.Met al.: Grounded language learning in a simulated 3d world (2017). https://doi.org/10.48550/arXiv.1706.06551

  15. Kadian, A., et al.: Sim2real predictivity: Does evaluation in simulation predict real-world performance? IEEE Robot. Autom. Lett. 5(4), 6670–6677 (2020). https://doi.org/10.1109/LRA.2020.3013848

    Article  Google Scholar 

  16. Kolve, E., et al.: Ai2-thor: An interactive 3d environment for visual ai (2017). https://doi.org/10.48550/arXiv.1712.05474

  17. Murali, A., et al.: Pyrobot: An open-source robotics framework for research and benchmarking (2019). https://doi.org/10.48550/arXiv.1906.08236

  18. Partsey, R.: Robust Visual Odometry for Realistic PointGoal Navigation. Master’s thesis, Ukrainian Catholic University (2021)

    Google Scholar 

  19. Partsey, R., Wijmans, E., Yokoyama, N., Dobosevych, O., Batra, D., Maksymets, O.: Is mapping necessary for realistic pointgoal navigation? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17232–17241 (6 2022)

    Google Scholar 

  20. Savva, M., Chang, A.X., Dosovitskiy, A., Funkhouser, T., Koltun, V.: Minos: Multimodal indoor simulator for navigation in complex environments (2017). https://doi.org/10.48550/arXiv.1712.03931

  21. Savva, M., et al.: Habitat: A platform for embodied ai research. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9338–9346 (2019). https://doi.org/10.1109/ICCV.2019.00943

  22. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms (2017). https://doi.org/10.48550/arXiv.1707.06347

  23. Straub, J., et al.: The replica dataset: A digital replica of indoor spaces. arXiv:1906.05797 (2019). https://doi.org/10.48550/arXiv.1906.05797

  24. Weihs, L., et al.: Allenact: A framework for embodied ai research (2020). https://doi.org/10.48550/arXiv.2008.12760

  25. Wijmans, E., et al.: Dd-ppo: Learning near-perfect pointgoal navigators from 2.5 billion frames (2019). https://doi.org/10.48550/arXiv.1911.00357

  26. Wu, Y., Wu, Y., Gkioxari, G., Tian, Y.: Building generalizable agents with a realistic and rich 3d environment (2018). https://doi.org/10.48550/arXiv.1801.02209

  27. Xia, F., R. Zamir, A., He, Z.Y., Sax, A., Malik, J., Savarese, S.: Gibson env: real-world perception for embodied agents. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018). https://doi.org/10.1109/cvpr.2018.00945

  28. Yan, C., Misra, D., Bennnett, A., Walsman, A., Bisk, Y., Artzi, Y.: Chalet: Cornell house agent learning environment (2018). https://doi.org/10.48550/arXiv.1801.07357

  29. Zhao, X., Agrawal, H., Batra, D., Schwing, A.G.: The surprising effectiveness of visual odometry techniques for embodied pointgoal navigation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 16127–16136 (October 2021). https://doi.org/10.1109/iccv48922.2021.01582

  30. Zhu, Y., et al.: Target-driven visual navigation in indoor scenes using deep reinforcement learning. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3357–3364 (2017). https://doi.org/10.1109/ICRA.2017.7989381

Download references

Acknowledgements

This paper is based on a course project for the CS-503 Visual Intelligence course at EPFL. The author thanks Donggyun Park for helpful discussions and Ivan Stresec for proofreading the paper. The author also thanks Ruslan Partsey and team UCU MLab for privately sharing their agent checkpoint for testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frano Rajič .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 19754 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rajič, F. (2023). Robustness of Embodied Point Navigation Agents. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13806. Springer, Cham. https://doi.org/10.1007/978-3-031-25075-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25075-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25074-3

  • Online ISBN: 978-3-031-25075-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics