Skip to main content

Towards Energy-Efficient Hyperspectral Image Processing Inside Camera Pixels

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13806))

Included in the following conference series:

Abstract

Hyperspectral cameras generate a large amount of data due to the presence of hundreds of spectral bands as opposed to only three channels (red, green, and blue) in traditional cameras. This requires a significant amount of data transmission between the hyperspectral image sensor and a processor used to classify/detect/track the images, frame by frame, expending high energy and causing bandwidth and security bottlenecks. To mitigate this problem, we propose a form of processing-in-pixel (PIP) that leverages advanced CMOS technologies to enable the pixel array to perform a wide range of complex operations required by the modern convolutional neural networks (CNN) for hyperspectral image (HSI) recognition. Consequently, our PIP-optimized custom CNN layers effectively compress the input data, significantly reducing the bandwidth required to transmit the data downstream to the HSI processing unit. This reduces the average energy consumption associated with pixel array of cameras and the CNN processing unit by \(25.06\times \) and \(3.90\times \) respectively, compared to existing hardware implementations. Our experimental results yield reduction of data rates after the sensor ADCs by up to \({\sim }10\times \), significantly reducing the complexity of downstream processing. Our custom models yield average test accuracies within \(0.56\%\) of the baseline models for the standard HSI benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The weights can also be programmable by mapping to emerging resistive non-volatile memory elements embedded within individual pixels.

  2. 2.

    The pixel array energy is equal to the image read-out energy for the baseline models and in-pixel convolution energy for custom models.

  3. 3.

    The energy model for 2D convolutional layers can be extended to linear layers with \(k=H_l^o=W_l^o=1\) and \(C_l^i\) and \(C_l^o\) as the number of input and output neurons respectively.

References

  1. Alhamzi, K., et al.: 3D object recognition based on image features: a survey. Int. J. Comput. Inf. Technol. (IJCIT) 3, 651–660 (2014)

    Google Scholar 

  2. Lv, Z., et al.: Real-time image processing for augmented reality on mobile devices. J. Real-Time Image Process. 18, 245–248 (2021)

    Google Scholar 

  3. Facciolo, G., et al.: Automatic 3D reconstruction from multi-date satellite images. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). vol. 1, 1542–1551 (2017)

    Google Scholar 

  4. Chen, Y., et al.: Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 7(6), 2094–2107 (2014)

    Article  Google Scholar 

  5. Zheng, Z., et al.: FPGA: fast patch-free global learning framework for fully end-to-end hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 58(8), 5612–5626 (2020)

    Article  Google Scholar 

  6. Roy, S.K., et al.: HybridSN: exploring 3-D-2-D CNN feature hierarchy for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 17(2), 277–281 (2020)

    Article  Google Scholar 

  7. Luo, Y., et al.: HSI-CNN: a novel convolution neural network for hyperspectral image. In: 2018 International Conference on Audio, Language and Image Processing (ICALIP), vol. 1, pp. 464–469 (2018)

    Google Scholar 

  8. Krizhevsky, A., et al.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25 (2012)

    Google Scholar 

  9. Li, D., et al.: Evaluating the energy efficiency of deep convolutional neural networks on CPUs and GPUs. In: 2016 IEEE International Conferences on Big Data and Cloud Computing (BDCloud), vol. 1, pp. 477–484 (2016)

    Google Scholar 

  10. Chen, Z., et al.: Processing near sensor architecture in mixed-signal domain with CMOS image sensor of convolutional-kernel-readout method. IEEE Trans. Circuits Syst. I Regul. Pap. 67(2), 389–400 (2020)

    Article  Google Scholar 

  11. Mennel, L., et al.: Ultrafast machine vision with 2D material neural network image sensors. Nature 579, 62–66 (2020)

    Article  Google Scholar 

  12. Bose, L., Dudek, P., Chen, J., Carey, S.J., Mayol-Cuevas, W.W.: Fully embedding fast convolutional networks on pixel processor arrays. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 488–503. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_29

    Chapter  Google Scholar 

  13. Datta, G., et al.: P\(^2\)M: a processing in- pixel in- memory paradigm for resource-constrained TinyML applications. arXiv preprint arXiv:2203.04737 (2022)

  14. Meng, Z., et al.: Deep residual involution network for hyperspectral image classification. Remote Sens. 13(16) (2021)

    Google Scholar 

  15. He, K., et al.: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 (2015)

  16. Kodukula, V., et al.: Dynamic temperature management of near-sensor processing for energy-efficient high-fidelity imaging. Sensors 1(3) (2021)

    Google Scholar 

  17. Sony to release world’s first intelligent vision sensors with AI processing functionality (2020). https://www.sony.com/en/SonyInfo/News/Press/202005/20-037E/. Accessed 12 Jan 2022

  18. Chi, P., et al.: PRIME: a novel processing-in-memory architecture for neural network computation in ReRAM-based main memory. In: 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), vol. 1, pp. 27–39 (2016)

    Google Scholar 

  19. Song, R., Huang, K., Wang, Z., Shen, H.: A reconfigurable convolution-in-pixel CMOS image sensor architecture. IEEE Trans. Circuits Syst. Video Technol. 32, 7212–7225 (2022)

    Google Scholar 

  20. Adão, T., et al.: Hyperspectral imaging: a review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens. 9(11), 1110 (2017)

    Google Scholar 

  21. Hagen, N., Kudenov, M.: Review of snapshot spectral imaging technologies. Opt. Eng. 52, 090901 (2013)

    Google Scholar 

  22. Imec introduces new snapshot hyperspectral image sensors with mosaic filter architecture (2014). https://phys.org/news/2015-02-imec-snapshot-hyperspectral-image-sensors.html. Accessed 12 Feb 2014

  23. Alipour-Fard, T., Paoletti, M.E., Haut, J.M., Arefi, H., Plaza, J., Plaza, A.: Multibranch selective kernel networks for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 1(1), 1–5 (2020)

    Google Scholar 

  24. Song, W., et al.: Hyperspectral image classification with deep feature fusion network. IEEE Trans. Geosci. Remote Sens. 56(6), 3173–3184 (2018)

    Article  Google Scholar 

  25. Ben Hamida, A., et al.: 3-D deep learning approach for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 56(8), 4420–4434 (2018)

    Article  Google Scholar 

  26. Hahn, R., et al.: Detailed characterization of a mosaic based hyperspectral snapshot imager. Opt. Eng. 59(12), 125102 (2020)

    Article  Google Scholar 

  27. Lodhi, V., Chakravarty, D., Mitra, P.: Hyperspectral imaging system: development aspects and recent trends. Sens. Imag. 20(1), 1–24 (2019)

    Google Scholar 

  28. Gonzalez, P., Geelen, B., Blanch, C., Tack, K., Lambrechts, A.: A CMOS-compatible, monolithically integrated snapshot-mosaic multispectral imager. NIR News 26(4), 6–11 (2015)

    Article  Google Scholar 

  29. Datta, G., et al.: P2M-DeTrack: processing-in-pixel-in-memory for energy-efficient and real-time multi-object detection and tracking. arXiv preprint arXiv:2205.14285 (2022)

  30. Snapshot mosaic hyperspectral imaging camera (2020). http://image-sensors-world.blogspot.com/2016/02/imec-introduces-broad-spectrum.html. Accessed 12 Jan 2020

  31. Courbariaux, M., et al.: Binarized neural networks: training deep neural networks with weights and activations constrained to +1 or \(-\)1. arXiv preprint arXiv:1602.02830 (2016)

  32. Datta, G., et al.: HYPER-SNN: towards energy-efficient quantized deep spiking neural networks for hyperspectral image classification. arXiv preprint arXiv:2107.11979 (2021)

  33. ON Semiconductor: CMOS Image Sensor, 1.2 MP, Global Shutter. (3 220) Rev. 10

    Google Scholar 

  34. Zhong, Z., et al.: Spectral-spatial residual network for hyperspectral image classification: a 3-D deep learning framework. IEEE Trans. Geosci. Remote Sens. 56(2), 847–858 (2018)

    Article  Google Scholar 

  35. Datta, G., et al.: Training energy-efficient deep spiking neural networks with single-spike hybrid input encoding. arXiv preprint arXiv:2107.12374 (2021)

  36. Datta, G., et al.: Can deep neural networks be converted to ultra low-latency spiking neural networks? (2021)

    Google Scholar 

  37. Kundu, S., Datta, G., Pedram, M., Beerel, P.A.: Spike-thrift: towards energy-efficient deep spiking neural networks by limiting spiking activity via attention-guided compression. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 3953–3962, January 2021

    Google Scholar 

  38. Chowdhery, A., et al.: Visual wake words dataset. arXiv preprint arXiv:1906.05721 (2019)

  39. Gonugondla, S.K., et al.: Fundamental limits on energy-delay-accuracy of in-memory architectures in inference applications. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41, 3188–3201 (2021)

    Google Scholar 

  40. Kang, M., et al.: An in-memory VLSI architecture for convolutional neural networks. IEEE J. Emerging Sel. Top. Circuits Syst. 8(3), 494–505 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the DARPA HR00112190120 award for supporting this work. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of DARPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gourav Datta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Datta, G., Yin, Z., Jacob, A.P., Jaiswal, A.R., Beerel, P.A. (2023). Towards Energy-Efficient Hyperspectral Image Processing Inside Camera Pixels. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13806. Springer, Cham. https://doi.org/10.1007/978-3-031-25075-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25075-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25074-3

  • Online ISBN: 978-3-031-25075-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics